Magnetische Kühlung im Industriemaßstab
Magnetokalorik soll Beitrag zur effizienteren Wasserstoff-Verflüssigung leisten
29.03.2023
Bei der Transformation zu einer CO2-neutralen Gesellschaft wird Wasserstoff eine zentrale Rolle spielen. Gemessen am heutigen Verbrauch verfünffacht sich Schätzungen zufolge der weltweite Wasserstoff-Bedarf bis 2050 auf rund 550 Millionen Tonnen. Um Wasserstoff zu speichern, sind jedoch große Energiemengen nötig. Bei der Verflüssigung geht ungefähr ein Drittel des Energieinhalts von Wasserstoff verloren, was den Prozess weitgehend unwirtschaftlich macht. In dem mit rund fünf Millionen Euro geförderten Horizont Europa-Projekt HyLICAL will nun ein Team unter Mitwirkung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der TU Darmstadt und des Start-ups MAGNOTHERM Technologien zur Speicherung von Flüssigwasserstoff deutlich verbessern. Dafür setzt das Team auf magnetokalorische Materialien: Stoffe, die ihre Temperatur ändern, wenn sie in ein Magnetfeld gebracht werden.
„In dem Gemeinschaftsprojekt wollen wir mit Partnern aus neun europäischen Ländern den Energieverbrauch sowie die Investitions- und Betriebskosten bei der Wasserstoff-Verflüssigung entscheidend senken“, sagt Dr. Tino Gottschall vom . Dafür wollen die Partner ihr Fachwissen auf den Gebieten Materialforschung, Anlagenentwicklung sowie Simulation bündeln und in eine neue Technologie überführen. Hochfeld-Magnetlabor Dresden (HLD) am HZDR
Denn Energie kann in Form von Flüssigwasserstoff gespeichert und transportiert werden. Dafür ist jedoch eine kostengünstige Verflüssigungstechnologie erforderlich. Flüssiger Wasserstoff hat eine 70 Prozent höhere volumetrische Energiedichte als der an Wasserstofftankstellen komprimierte gasförmige Wasserstoff. Das macht den Transport und die Speicherung großer Mengen Flüssigwasserstoffs so attraktiv. Wasserstoff könnte künftig eine größere Rolle im Verkehr spielen – bis hin zum Energieträger in der Schwerlastmobilität. Die Verflüssigung von Wasserstoff, wie sie im Vorhaben geplant ist, soll die technologische Machbarkeit zur Handhabung großer Mengen Wasserstoff erkunden.
Magnetokalorik: Ausbruch aus dem Nischendasein
„Wir wollen eine alternative Technologie zur Verflüssigung etablieren, die auf dem Prinzip der magnetischen Kühlung beruht. Wenn wir das mit dem herkömmlichen Kühlprozess bildhaft vergleichen wollen, würde ein Magnet die Rolle des Kompressors übernehmen und das magnetokalorische Material die des Kühlmittels. Ihr Zusammenspiel ermöglicht es uns, die für die Wasserstoff-Verflüssigung nötigen tiefen Temperaturen zu erreichen“, umreißt kurz die dem Projekt zugrundeliegende Idee. Prof. Oliver Gutfleisch vom Institut für Materialwissenschaft an der TU Darmstadt
Aus den langjährigen gemeinsamen Vorarbeiten heraus wurde 2019 die aus der TU Darmstadt ausgegründet. Das große Ziel des Start-ups: die Markteinführung der magnetischen Kühlung. Mit einem Getränkekühler für industrielle Anwendungen gibt es bereits ein kommerzielles Produkt. „Unsere Technologie bedeutet zudem eine massive Steigerung von Effizienz und Nachhaltigkeit, ganz ohne Kompressoren und umweltschädliche Kühlgase. So können wir die grüne Transformation beschleunigen“, erklärt Timur Sirman, einer der beiden MAGNOTHERM-Geschäftsführer. HyLICAL ist nun der nächste Schritt in Richtung Tieftemperatur-Anwendung. Firma MAGNOTHERM
Ziel: Fünf Tonnen Flüssigwasserstoff – pro Tag
Nun wollen die Forschenden einen Prototyp bauen, mit dessen Hilfe die magnetische Kühlung Einzug in die industrielle Wasserstoff-Verflüssigung halten soll. Das Team kann dabei auf die langjährige Expertise am HLD sowohl in der Entwicklung und Herstellung von Magnetspulen als auch in der Kryotechnik zurückgreifen. „Wir haben bereits viele magnetische Materialien in hohen Feldern untersucht – diese Materialbibliothek ist ein Erfahrungsschatz, auf dem wir aufbauen können“, sagt Gottschall, seinerzeit Mitbegründer von MAGNOTHERM. An der Technischen Universität Darmstadt entwickeln Wissenschaftler*innen bereits magnetokalorische Materialien, die im angestrebten Temperaturbereich arbeiten. „Zur Wasserstoff-Verflüssigung benötigen wir -253 Grad Celsius. Diesen sehr tiefen Temperaturen nähern wir uns durch Vorkühlung mit flüssigem Stickstoff, mit dem wir bis auf -196 Grad kommen. Die Differenz muss dann unser magnetokalorisches Material schaffen“, erklärt Gutfleisch.
Mit der Pilotanlage möchte das Team demonstrieren, dass die Wasserstoff-Verflüssigung mit dem magnetokalorischen Prinzip im Industriemaßstab umsetzbar ist, das heißt konkret: für eine Produktion von mehr als 5 Tonnen am Tag. Zudem wollen die Forschenden den Materialeinsatz an kritischen Rohstoffen zurückfahren. Das Team erwartet einen bis zu 50 Prozent geringeren Energieverbrauch bei der Verflüssigung, verglichen mit der momentan etablierten konventionellen Technologie. All das soll Flüssigwasserstoff deutlich kostengünstiger machen. Darüber hinaus gestattet das Konzept die Umsetzung von Verflüssigungsanlagen, die in kleinem Maßstab und dezentral arbeiten können. Dieser Betriebsmodus macht die Technologie deshalb auch interessant für den Ausbau erneuerbarer Energiequellen. Ebenfalls oftmals dezentral gewonnen, ließe sich deren Energie so vorteilhaft über den Umweg Flüssigwasserstoff zwischenspeichern.