Methods and Software

Our research is based on computer simulation using particle-based, physical models. Depending on the problem, we develop and use various software packages on high-performance computers.


We are currently working on the following topics:

  • Development of classical interatomic potentials for large-scale molecular dynamics simulations
  • Development of visualization and analysis tools for “big data” obtained by atomistic computer simulations

Read more

Scientific codes developed in the group

  • Open Visualisation Tool (together with OVITO GmbH)
    This program is a scientific visualization and analysis software for atomistic and particle simulation data. It helps scientists gain better insights into materials phenomena and physical processes. The program is freely available for all major platforms under an open source license. It has served in a growing number of computational simulation studies as a powerful tool to analyze, understand and illustrate simulation results.
  • Fitting of Interatomic Potentials (together with P. Erhart, Chalmers U)
    This program is a versatile tool for the construction of advanced atomistic models. It is written in C++ and Python. It was primarily developed to fit interatomic potential models. Thanks to its flexible generic structure its application range, however, is much larger. In a general sense, it allows one to develop models that describe a given property as a function of an atomic (or atom-like) configuration. The property in question can be scalar or vectorial in nature, and could represent e.g., total energies and forces, or eventually electronic eigen energies.

Scientific codes used in the group

We have published results on the following topics:

Byggmästar, Jesper ; Nagel, Morten ; Albe, Karsten ; Henriksson, Krister Olof Edvin ; Nordlund, Kai Henrik (2019):
Analytical interatomic bond-order potential for simulations of oxygen defects in iron.
In: Journal of Physics: Condensed Matter, 31 (21), pp. 215401(1)-215401(11). IOP Publishing, ISSN 0953-8984,
DOI: 10.1088/1361-648X/ab0931,

Mock, Markus ; Albe, Karsten (2018):
Modelling of dislocation-solute interaction in ODS steels : analytic bond-order potential for the iron-yttrium system.
In: Journal of Nuclear Materials, 509, pp. 102-113. Elsevier, ISSN 0022-3115,
DOI: 10.1016/j.jnucmat.2018.06.026,

Los, J. H. ; Kroes, J. M. H. ; Albe, K. ; Gordillo, R. M. ; Katsnelson, M. I. ; Fasolino, A. (2017):
Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h -BN.
In: Physical Review B, 96 (18), pp. 184108-(11). ISSN 2469-9950,
DOI: 10.1103/PhysRevB.96.184108,

Stukowski, Alexander ; Fransson, Erik ; Mock, Markus ; Erhart, Paul (2017):
Atomicrex—a general purpose tool for the construction of atomic interaction models.
In: Modelling and Simulation in Materials Science and Engineering, 25 (5), pp. 055003 (1-9). ISSN 0965-0393,

Ruestes, C. J. ; Stukowski, A. ; Tang, Y. ; Tramontina, D. R. ; Erhart, P. ; Remington, B. A. ; Urbassek, H. M. ; Meyers, M. A. ; Bringa, E. M. (2014):
Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution.
In: Materials Science and Engineering: A, 613, pp. 390-403. Elsevier Science Publishing, ISSN 09215093,

Mock, Markus (2014):
Analytical Bond-Order Potential for α- and ß-Tin.
TU Darmstadt, [Master Thesis]

Hohmann, Mareike V. ; Ágoston, Péter ; Wachau, André ; Bayer, Thorsten J. M. ; Broetz, Joachim ; Albe, Karsten ; Klein, Andreas (2011):
Orientation dependent ionization potential of In2O3: A natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics.
In: Journal of Physics: Condensed Matter, 23 (33), p. 334203. IOP Publishing, ISSN 0953-8984,

Albe, Karsten ; Nord, J. ; Nordlund, K. (2009):
Dynamic charge-transfer bond-order potential for gallium nitride.
In: Philos. Mag., 89 (34-36), pp. 3477-3497. Taylor & Francis, [Article]

Mueller, Michael ; Erhart, Paul ; Albe, Karsten (2007):
Thermodynamics of L1(0) ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential.
In: Phys. Rev. B, 76 (15), [Article]

Mueller, Michael ; Erhart, Paul ; Albe, Karsten (2007):
Analytic bond-order potential for bcc and fcc iron - comparison with established embedded-atom method potentials.
In: J. Phys.: Condens. Mater., 19 (32), pp. 326220-1-326220-23. IOP Publishing, [Article]

Erhart, Paul ; Juslin, Niklas ; Goy, Oliver ; Nordlund, Kai ; Müller, Ralf ; Albe, Karsten (2006):
Analytic bond-order potential for atomistic simulations of zinc oxide.
In: Journal of Physics: Condensed Matter, 18 (29), pp. 6585-6605. IOP Publishing, ISSN 0953-8984,

Juslin, N. ; Erhart, P. ; Traskelin, P. ; Nord, J. ; Henriksson, K. O. E. ; Nordlund, K. ; Salonen, E. ; Albe, K. (2005):
Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system.
In: J. Appl. Phys., 98 (12), pp. 123520-1. American Institute of Physics, ISSN 0021-8979,

Erhart, P. ; Albe, K. (2005):
Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide.
In: Phys. Rev. B, 71 (3), pp. 035211-1. American Physical Society, [Article]

Nord, J. ; Albe, K. ; Erhart, P. ; Nordlund, K. (2003):
Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride.
In: J. Phys.: Condens. Matter., 15 (32), pp. 5649-5662. IOP Publishing, [Article]

Albe, K. ; Nordlund, K. ; Nord, J. ; Kuronen, A. (2002):
Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs.
In: Phys. Rev. B, 66 (3), pp. 035205-1. American Physical Society, [Article]

Albe, K. ; Nordlund, K. ; Averback, R. S. (2002):
Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon.
In: Phys. Rev. B, 65 (19), pp. 195124-1. American Physical Society, [Article]

Albe, Karsten ; Benedek, R. ; Averback, R. S. ; Seidman, D. N. (2000):
Classical interatomic potential for Nb-alumina interfaces.
In: Materials Research Society: Fall Meeting 2000. - Warendale, PA: MRS, 2001.- (MRS proceedings ; 654).- S. AA4.3.2, 654, pp. AA4.3.2, Warendale, PA, MRS, 2000 MRS Fall Meeting, [Conference or Workshop Item]

Stukowski, Alexander
Andreoni, Wanda ; Yip, Sidney (eds.) (2018):
Dislocation Analysis Tool for Atomistic Simulations.
In: Handbook of Materials Modeling, pp. 1-14, Springer, ISBN 978-3-319-42913-7,
DOI: 10.1007/978-3-319-42913-7,
[Book Section]

Stukowski, Alexander (2016):
Visualization and Analysis Strategies for Atomistic Simulations.
245, In: Multiscale Materials Modeling for Nanomechanics, pp. 317-336, Springer International Publishing, ISBN 978-3-319-33478-3,
[Book Section]

Stukowski, Alexander (2014):
A triangulation-based method to identify dislocations in atomistic models.
In: Journal of the Mechanics and Physics of Solids, 70, pp. 314-319. Elsevier Science Publishing, ISSN 00225096,

Stukowski, Alexander (2014):
Computational Analysis Methods in Atomistic Modeling of Crystals.
In: JOM, 66 (3), pp. 399-407. Springer US , ISSN 1047-4838,

Stukowski, Alexander ; Albe, Karsten (2010):
Extracting dislocations and non-dislocation crystal defects from atomistic simulation data.
In: Mod. Sim. Mat. Sci. Eng., 18 (8), pp. 085001-13. IOP Publishing, [Article]

Stukowski, Alexander (2009):
Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool.
In: Modelling and Simulation in Materials Science and Engineering, 18 (1), pp. 015012. IOP Publishing, ISSN 0965-0393, e-ISSN 1361-651X,
DOI: 10.1088/0965-0393/18/1/015012,