Intrinsic-Strain Engineering by Dislocation Imprint in Bulk Ferroelectrics

New Publication in “Physical Review Letters”

2023/07/19

Authors: Fanping Zhuo, Xiandong Zhou, Shuang Gao, Felix Dietrich, Pedro B. Groszewicz, Lovro Fulanovic, Patrick Breckner, Bai-Xiang Xu, Hans-Joachim Kleebe, Dragan Damjanovic and Jürgen Rödel

We report an intrinsic strain engineering, akin to thin filmlike approaches, via irreversible high- temperature plastic deformation of a tetragonal ferroelectric single-crystal BaTiO3. Dislocations well-aligned along the [001] axis and associated strain fields in plane defined by the [110]?⁄[110?] plane are introduced into the volume, thus nucleating only in-plane domain variants. By combining direct experimental observations and theoretical analyses, we reveal that domain instability and extrinsic degradation processes can both be mitigated during the aging and fatigue processes, and demonstrate that this requires careful strain tuning of the ratio of in-plane and out-of-plane domain variants. Our findings advance the understanding of structural defects that drive domain nucleation and instabilities in ferroic materials and are essential for mitigating device degradation.

Link to Article

Physical Review Letters, vol. 131, p. 016801, Jul. 2023

DOI: 10.1103/PhysRevLett.131.016801