DFG-Graduiertenkolleg 2561 - "MatCom - ComMat"
„Werkstoffverbunde aus Verbundwerkstoffen“

Ziel des GRK 2561 „Werkstoffverbunde aus Verbundwerkstoffen“ ist die Entwicklung neuartiger Verbundwerkstoffe, die eine starke Erhöhung der Temperaturen von Verbrennungsmaschinen und -prozessen unter extremen Umgebungsbedingungen, wie Oxidation oder Erosion, jenseits von 1300 Grad Celsius erlauben. Im Kontext der Energiewende hat dies ein hohes Anwendungspotenzial in Hochtemperaturprozessen.

MatCom – ComMat – extrem hitzebeständige neuartige Werkstoffverbunde

Das GRK 2561 ist ein gemeinsames Projekt der Antragsteller Karlsruher Institut für Technologie, Sprecher: Prof. Dr.-Ing. Martin Heilmaier und der TU Darmstadt mit dem Koordinator Prof. Dr. Ralf Riedel. Das DECHEMA-Forschungsinstitut (DFI), Frankfurt ist an dem für 4 1/2 Jahre bewilligten Projekt beteiligt.

Neue Hochtemperaturwerkstoffe könnten eine revolutionäre Erhöhung der Betriebstemperaturen von Verbrennungsmaschinen und –prozessen erlauben und so Wirkungsgrade deutlich verbessern.

Im Fokus des neuen Forschungsverbundes stehen neuartige Verbundwerkstoffe aus intermetallischen Legierungen, die thermomechanisch stabile Phasen ausbilden und ultrahohe Betriebstemperaturen (über 1300°C ) erlauben. Diese Nanokomposite halten extremen Umgebungsbedingungen (etwa Oxidation, Korrosion, Erosion) dank ihrer „Selbstheilungskräfte“ stand. Ein Clou dabei: Die Legierungen werden oberflächlich zusätzlich mit polymerabgeleiteten, komplexen und wärmeisolierenden Keramiksystemen geschützt.

Die drei Institutionen werden an diesen hoch komplizierten Materialsystemen forschen: Während die intermetallischen Substratwerkstoffe am Karlsruher Institut für Technologie entwickelt werden, liegt der Schwerpunkt der Forschungsarbeiten an der TU Darmstadt auf der Seite der Beschichtungsmaterialien. Schließlich werden beide Materialsysteme, Metall und Keramik, miteinander verknüpft, indem geeignete Beschichtungsverfahren entwickelt werden. In Kooperation mit dem dritten Partner im Graduiertenkolleg, der DECHEMA in Frankfurt am Main, wird die Hochtemperaturkorrosion der Werkstoffverbunde unter realistischen Bedingungen, wie sie in Verbrennungsmotoren herrschen, untersucht.

Projekte (Dissertationen)

Dissertation: M.Sc. Samuel Aeneas Kredel

Supervisors: Prof. Ralf Riedel, Prof. Martin Heilmaier

Ceramics generally stand out thanks to their high thermal and chemical stability. Combined with a low thermal conductivity, these properties allow coatings for super alloys which enable their use at accelerated temperatures. The ceramic layer protects the workpiece from corrosion and lowers the temperature at the surface of the alloy. Thus, higher operation temperatures can be realized. As a result, turbines can run at higher efficiency. The aim of this project is the preparation of thermal protection coatings for applications above 1200 °C in aggressive environments.

Ultrahigh-temperature ceramic nanocomposites based on Si(M)CX will be derived via the polymer derived ceramic (PDC) route from single source precursors developed in Project 1. Syntheses conditions as well as different coating techniques, such as spin coating, dip coating and additive manufacturing, will be optimized for the preparation of thick and crack free ceramic layers on refractory (inter)metallic systems (e. g. Mo-Si-B-X). Structure and properties of the precursors and coatings will be extensively characterized. The performance of the fabricated composites will be tested at high temperatures in hostile environments. Thereby, suitable ceramic/(inter)metallic compositions with optimized structural characteristics and high-temperature capabilities will be identified.

The three doctoral projects in the corresponding phase of the RTG will emphasize on: 1) Synthesis of preceramic polymer precursors for ceramic nanocomposites and optimization of their visco-elastic properties for coating preparation purposes. 2) Fabrication and structural characterization of thick ceramic coatings (> 10 μm) on Mo-Si-B-X substrates. 3) Systematic studies of the high-temperature behaviour of optimized multi-layered ceramic/(inter)metallic systems concerning their long-term operation at temperatures above 1200 °C in hostile environments.

Dissertation: M.Sc. Jan Bernauer

Supervisors: Prof. Ralf Riedel , Prof. Hans-Joachim Kleebe

Ultra-high-temperature ceramics (UHTCs) are a class of materials with a melting point of 3000°C and beyond. Therefore, they are mainly used in applications where high temperatures (T > 2000°C) are required e.g. thermal barrier coatings. Borides, carbides and nitrides of the early transition metals (Zr, Hf, Nb, Ta) are suitable for this purpose. However, various studies revealed that single-phase bulk UHTCs have rather poor oxidation resistance under extreme and aggressive environment. Ceramic composites can be an alternative solution for applications in such environment.

The PDC (polymer derived ceramics) method is particularly suitable for the synthesis of ceramic composites. Pre-ceramic polymer precursors are thermally decomposed and thus offer simple and inexpensive access to various ceramic systems. Project 1 of GRK 2561 deals with the synthesis of ceramic composite systems for high-temperature applications by the PDC route. To produce suitable precursors, various polysilazanes [R1R2Si-NR3] are used in this project. The ternary system SiCN and modified systems with the composition Si(M, B)CN (M = Ti, Zr, Hf) are manufactured by thermal treatment of the precursors. Organometallic compounds are used to modify the polysilazanes. Spectroscopic and thermogravimetric analyzes are used for the intensive investigation of the precursors and the ceramization process.

Subsequently, various processes are used to produce monoliths of the ternary and multinary systems namely: warm pressing followed by thermal treatment, hot pressing at temperatures from 1600°C – 1800°C, as well as FAST / SPS techniques (Field Assisted Sintering Technology / Spark Plasma Sintering) at 1600°C – 1800 ° C. The monoliths produced in this way are structurally characterized using the common methods