marc1
Picture: M. Widenmeyer

Dr. Marc Widenmeyer

Working area(s)

Materials and Resources

Contact

work +49 6151 16-25871
fax +49 6151 16-25873

Work L2|01 156
Alarich-Weiss-Str. 2
64287 Darmstadt

  • Perovskite-type Energy Conversion Materials
  • Materials Regeneration
  • Nitrogen-containing Materials
  • In situ / in operando Diffraction Techniques (Synchrotron & Neutrons)
  • Thermal Analysis
  • Sustainable Synthesis
  • Solar Water Splitting
  • CO2 conversion
  • Green & turquoise hydrogen
2019 Senior Scientist, Department of Materials and Earth Sciences, Materials and Resources,
Technical University of Darmstadt
2014 – 2019 Postdoc, Institute for Materials Science, University of Stuttgart
2010 – 2014 Ph.D. Studies (Dr. rer. nat.), Institute of Inorganic Chemistry, University of Stuttgart
2005 – 2010 Diploma Studies Chemistry (Dipl.-Chem.), University of Stuttgart
2005 Abitur at Hölderlin Gymnasium Lauffen / Neckar
  • Gesellschaft Deutscher Chemiker (GDCh)
  • Verband angestellter Akademiker und leitender Angestellter der chemischen Industrie e.V. (VAA – Führungskräfte Chemie)
  • Chair Person of Review Panel 5A of the Institut Laue-Langevin (ILL), Grenoble, France
  • Member of the Scientific Council of the Institut Laue-Langevin (ILL), Grenoble, France
  • Scientific staff representative in the PhD Committee of the Materials Science Department at TU Darmstadt

Previous Publications:

  • M. Widenmeyer, Bildung und Kristallstrukturen metastabiler Vanadiumnitride: V16Ny sowie Entwicklung eines Reaktors für die in-situ Neutronenbeugung, Diplomarbeit, Univ. Stuttgart, 2010.
  • M. Widenmeyer, R. Niewa, In situ Neutron Diffraction in the System V–N, Z. Anorg. Allg. Chem. 2012, 638, 1629. https://doi.org/10.1002/zaac.201204125
  • M. Widenmeyer, R. Niewa, In situ Neutron Diffraction in the System Fe–N, Z. Anorg. Allg. Chem. 2012, 638, 1628. https://doi.org/10.1002/zaac.201204124
  • A. Leineweber, S. Shung, Z.-K. Liu, M. Widenmeyer, R. Niewa, Crystal structure determination of Hägg carbide, χ-Fe5C2 by first-principles calculations and Rietveld refinement, Z. Kristallogr. 2012, 227, 207–220. https://doi.org/10.1524/zkri.2012.1490
  • M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanisms of (metastable) cobalt and manganese nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-223, Institut Laue-Langevin (ILL), 2013.
  • M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanisms of (metastable) iron nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-222, Institut Laue-Langevin (ILL), 2013.
  • M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanism of (metastable) copper, nickel and vanadium nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-214, Institut Laue-Langevin (ILL), 2013.
  • M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanism of (metastable) iron nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-206, Institut Laue-Langevin (ILL), 2013.
  • D. Weber, M. Lerch, H. Kohlmann, M. Widenmeyer, R. Niewa, M. Köpf, T. Nilges, Crystalline metastable compounds studied by in situ neutron powder diffraction, Experimental Report 5-25-210, Institut Laue-Langevin (ILL), 2013.
  • C. Ney, M. Widenmeyer, R. Niewa, Structure determination of solid solutions in the system Li8TeN2–Li7IN2, Experimental Report 6362, Heinz Maier-Leibnitz Zentrum (FRM-II), 2013.
  • M. Widenmeyer, R. Niewa, T. C. Hansen, H. Kohlmann, In situ Neutron Diffraction as a Probe on Formation and Decomposition of Nitrides and Hydrides: A Case Study, Z. Anorg. Allg. Chem. 2013, 639, 285–295. https://doi.org/10.1002/zaac.201200299
  • H. Kohlmann, P. Wenderoth, C. Reichert, M. Widenmeyer, Pathways of the hydrogenation of light-weight intermetallics with nitrogen, aluminium and silicon, Experimental Report 5-22-714, Institut Laue-Langevin (ILL), 2013.
  • M. Widenmeyer, C. Ney, M. Bischoff, J. Hertrampf, R. Niewa, Nitrogen content of CrN1+x, Experimental Report 8946, Heinz Maier-Leibnitz Zentrum (FRM-II), 2013.
  • M. Widenmeyer, T. C. Hansen, R. Niewa, Formation and decomposition of metastable α´´-Fe16N2 from in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem. 2013, 639, 2851–2859. https://doi.org/10.1002/zaac.201300379
  • M. Widenmeyer, T. C. Hansen, E. Meissner, R. Niewa, Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem. 2014, 640, 1265–1274. https://doi.org/10.1002/zaac.201300676
  • M. Widenmeyer, Synthese und Charakterisierung (meta)stabiler 3d-Übergangsmetallnitride MNx (M = V–Cu) und deren Zwischenstufen mittels in-situ Neutronenbeugung, Dissertation, Univ. Stuttgart 2014, ISBN 978-3-8439-1691-2, 1. Aufl., Dr. Hut, München.
  • M. Widenmeyer, E. Meissner, A. Senyshyn, R. Niewa, On the formation mechanism of chromium nitrides: An in situ study, Z. Anorg. Allg. Chem. 2014, 640, 2801–2808. https://doi.org/10.1002/zaac.201400246
  • P. Woidy, A. J. Karttunen, M. Widenmeyer, R. Niewa, F. Kraus, On Copper(I)-Fluorides, the Cuprophilic Interaction, the Preparation of Copper Nitride at Room Temperature and its Formation Mechanism at Elevated Temperatures, Chem. Eur. J. 2015, 21, 3290–3303. https://doi.org/10.1002/chem.201406136
  • M. Widenmeyer, L. Shlyk, A. Senyshyn, R. Mönig, R. Niewa, Structural and magnetic characterization of single-phase sponge-like bulk α''-Fe16N2, Z. Anorg. Allg. Chem. 2015, 641, 348–354. https://doi.org/10.1002/zaac.201500013
  • S. Söllradl, M. Greiwe, V. J. Bukas, M. R. Buchner, M. Widenmeyer, T. Kandemir, T. Zweifel, A. Senyshyn, S. Günther, T. Nilges, A. Türler, R. Niewa, Nitrogen-Doping in ZnO via Combustion Synthesis?, Chem. Mater. 2015, 27, 4188–4195. https://doi.org/10.1021/cm504200q
  • M. Widenmeyer, C. Wessel, R. Dronskowski, R. Niewa, V16N1.5: Metastable or Missing in the Binary Phase Diagram?, Z. Anorg. Allg. Chem. 2015, 641, 2610–2616. https://doi.org/10.1002/zaac.201500620
  • M. Widenmeyer, C. Peng, A. Baki, R. Niewa, A. Weidenkaff, Approaching Compositional Limits of Perovskite – type Oxides and Oxynitrides by Synthesis of Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1–xYxZr(O,N)3 (0.1 ≤ x ≤ 0.4), and Sr1–xLaxZr(O,N)3 (0.1 ≤ x ≤ 0.4), Solid State Sci. 2016, 54, 7–16. https://doi.org/10.1016/j.solidstatesciences.2015.11.016
  • M. Widenmeyer, W. Xie, A. Weidenkaff, Synthesis of Perovskite-type Oxides and Oxynitrides Located at the Stability Border by Pechini Method as Materials for Energy Conversion, Z. Kristallogr. Suppl. 2016, 36, 51.
  • M. Widenmeyer, X. Xiao, J. Häcker, C. M. Bubeck, W. Xie, A. Weidenkaff, Modified Novel Perovskite-type Oxides and Oxyfluoronitrides for Thermoelectric and Solar Water Splitting Application, Z. Kristallogr. Suppl. 2016, 36, 152.
  • T. Zou, W. Xie, X. Qin, M. Widenmeyer, J. Xu, J. He, A. Weidenkaff, Synergetic Effects of Lanthanum Doping on Enhancing Thermoelectric Properties of β-Zn4Sb3, J. Materiomics 2016, 2, 273–279. https://doi.org/10.1016/j.jmat.2016.06.002
  • M. Widenmeyer, L. Shlyk, N. Becker, R. Dronskowski, E. Meissner, R. Niewa, Synthesis of metastable Co4N, Co3N, Co2N and CoO0.74N0.24 from a single azide precursor and intermediates in the CoBr2 ammonolysis, Eur. J. Inorg. Chem. 2016, 4792–4801. https://doi.org/10.1002/ejic.201600684
  • M. Scavini, C. Castellano, S. Checchia, M. Allieta, X. Xiao, M. Widenmeyer, S. Yoon, T. Kohler, A. Weidenkaff, M. Coduri, Exploring the competition of antiferrodistorsive and polar instabilities in Ba1–xEuxTiO3 system using powder diffraction, Experimental Report CH-4799, European Synchrotron Radiation Facility (ESRF), 2017.
  • X. Xiao, M. Widenmeyer, W. Xie, T. Zou, S. Yoon, M. Scavini, S. Checchia, Z. Zhong, P. Hansmann, S. Kilper, A. Kovalevsky, A. Weidenkaff, Tailoring the structure and thermoelectric properties of BaTiO3 via Eu2+ substitution, Phys. Chem. Chem. Phys. 2017, 19, 13469–13480. https://doi.org/10.1039/C7CP00020K
  • T. Zou, T. Jia, W. Xie, Y. Zhang, M. Widenmeyer, X. Xiao, A. Weidenkaff, Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution, Phys. Chem. Chem. Phys. 2017, 19, 18273–18278. https://doi.org/10.1039/C7CP02744C
  • M. Widenmeyer, C. Bubeck, M. Hackner, A. Weidenkaff, O/N ordering in perovskite-type AB(O,N)3?, Experimental Report 11891, Heinz Maier-Leibnitz Zentrum (FRM-II), 2017.
  • S. Yoon, K. Son, H. Hagemann, M. Widenmeyer, A. Weidenkaff, Cr-substituted Ba2In2O5·(H2O)x (x = 0.16, 0.74), Solid State Sci., 2017, 73, 1–6. https://doi.org/10.1016/j.solidstatesciences.2017.08.019
  • M. Widenmeyer, T. C. Hansen, A. Leineweber, A. Weidenkaff, R. Niewa, Solid-Solid Nitrogen Transfer in the System Mn–N Detected via in situ Neutron Diffraction, Z. Anorg. Allg. Chem., 2017, 643, 1929–1938. https://doi.org/10.1002/zaac.201700304
  • S. Yoon, M. Gaul, S. Sharma, K. Son, H. Hagemann, D. Ziegenbalg, U. Schwingenschlogl, M. Widenmeyer, A. Weidenkaff, Photocatalytic CO2 Reduction by Cr-substituted Ba2(In2–xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60), Solid State Sci. 2018, 78, 22–29. https://doi.org/10.1016/j.solidstatesciences.2018.02.005
  • J. Hertrampf, P. Becker, M. Widenmeyer, A. Weidenkaff, E. Schluecker, R. Niewa, Ammonothermal Crystal Growth of Indium Nitride, Cryst. Growth Des. 2018, 18, 2365–2369. https://doi.org/10.1021/acs.cgd.7b01776
  • T. Zou, W. Xie, M. Widenmeyer, X. Xiao, X. Qin, A. Weidenkaff, Enhancing Point Defects Scattering in Copper Antimony Selenides via Samarium and Sulfur co-doping, Rare Metals 2018, 37, 290–299. https://doi.org/10.1007/s12598-018-1038-6
  • S. Yoon, K. Son, S. G. Ebbinghaus, M. Widenmeyer, A. Weidenkaff, Ferromagnetism in Nitrogen and Fluorine Substituted BaTiO3, J. Alloys Compd., 2018, 749, 628–633. https://doi.org/10.1016/j.jallcom.2018.03.221
  • A. Knöller, A. Diem, T. Runcevski, R. Dinnebier, M. Widenmeyer, J. Bill, Z. Burghard, Ultrahigh Damping Capacities in Lightweight Structural Materials, Nano Lett., 2018, 18, 2519–2524. https://doi.org/10.1021/acs.nanolett.8b00194
  • K. Zakharchuk, M. Widenmeyer, D. Alikin, W. Xie, S. Populoh, S. Mikhalev, A. Tselev, J. Frade, A. Weidenkaff, A. Kovalevsky, Self-forming nanocomposite concept for ZnO-based thermoelectrics, J. Mater. Chem. A 2018, 6, 13386–13396. https://doi.org/10.1039/C8TA01463A
  • C. Bubeck, M. Widenmeyer, G. Richter, M. Coduri, E. Salas Colera, S. Yoon, F. Osterloh, A. Weidenkaff, Perovskite-type Oxynitrides LaTaO2N and LaTaON2 – Synthetic Strategies, NanoGe Proceedings, 2018, DOI: https://doi.org/10.29363/nanoge.fallmeeting.2018.041.
  • M. Widenmeyer, C. Bubeck, A. T. De Denko, F. Osterloh, S. Yoon, A. Weidenkaff, New Perovskite-type Oxynitrides as Potential Photoanodes for Solar Water Splitting, NanoGe Proceedings, 2018.
  • X. Xiao, M. Widenmeyer, K. Mueller, M. Scavini, S. Checchia, C. Castellano, S. Yoon, W. Xie, T. Zou, U. Starke, K. Zakharchuk, A. Kovalevsky, A. Weidenkaff, A squeeze on the perovskite structure improves the thermoelectric performance of Europium Calcium Titanates, Mater. Today Phys. 2018, 7, 96–105. https://doi.org/10.1016/j.mtphys.2018.11.009
  • T. H. Jahnke, A. Knöller, S. Kilper, D. Rothenstein, M. Widenmeyer, Z. Burghard, J. Bill, Coalescence in Hybrid Materials: The Key to High-Capacity Electrodes, ACS Appl. Energy Mater. 2018, 1, 7085–7092. https://doi.org/10.1021/acsaem.8b01495
  • T. Jahnke, S. Kilper, A. Knöller, F. Brümmer, M. Widenmeyer, D. Rothenstein, Z. Burghard, J. Bill, Bioinspired synthesis of SnO crosses as backbone in artificial sponges, Philos. Trans. Royal Soc. A 2019, 377, 20190130. https://doi.org/10.1098/rsta.2019.0130