Module Guide / Modulhandbuch

Course of Studies Master of Science Materials Science
Studiengang Master of Science Materialwissenschaft

Examination Regulations 2015
Prüfungsordnung 2015
Comments about this module guide:

- The module descriptions were extracted from TUCaN.
- Although there has been some effort to provide a purely English version of the module guide, some German Traces remain. Translations/meaning:

<table>
<thead>
<tr>
<th>German</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td></td>
</tr>
<tr>
<td>Deutsch</td>
<td>German</td>
</tr>
<tr>
<td>Englisch</td>
<td>English</td>
</tr>
<tr>
<td>Deutsch und Englisch</td>
<td>German and English</td>
</tr>
<tr>
<td>Form of instruction</td>
<td></td>
</tr>
<tr>
<td>Kurs</td>
<td>course</td>
</tr>
<tr>
<td>Praktikum</td>
<td>Lab</td>
</tr>
<tr>
<td>Seminar</td>
<td>seminar</td>
</tr>
<tr>
<td>Übung</td>
<td>exercises</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>lecture</td>
</tr>
<tr>
<td>Forms of examination / Grading</td>
<td></td>
</tr>
<tr>
<td>Abgabe</td>
<td>handing-in written report</td>
</tr>
<tr>
<td>bausteinbegleitende Prüfung</td>
<td>course exam</td>
</tr>
<tr>
<td>bestanden / nicht bestanden</td>
<td>pass / fail</td>
</tr>
<tr>
<td>Fachprüfung</td>
<td>exam with only three attempts</td>
</tr>
<tr>
<td>fakultativ</td>
<td>written or oral exam</td>
</tr>
<tr>
<td>Gewichtung</td>
<td>weight</td>
</tr>
<tr>
<td>Modulabschlussprüfung, Modulprüfung</td>
<td>module exam</td>
</tr>
<tr>
<td>mündliche / schriftliche Prüfung</td>
<td>written or oral exam</td>
</tr>
<tr>
<td>Referat</td>
<td>presentation</td>
</tr>
<tr>
<td>Standard (in context of grading)</td>
<td>grading 1(very good) - 5 (fail)</td>
</tr>
<tr>
<td>Studienleistung</td>
<td>exam without limitation on attempts</td>
</tr>
</tbody>
</table>

- Some entries of some modules may be missing. This does not necessarily have an implication on the availability of the respective module.
- Please be aware that the elective courses within this module guide cannot be guaranteed to be available in the future. For a number of reasons, e.g. the coming and leaving of professors and other lecturers, some modules may become temporarily or permanently unavailable, others may be added without immediately showing up in this list.
- Besides Materials Science courses from the Department of Materials and Geosciences only selected modules from the Geosciences part of the department and no modules from other departments are included in this guide, even though they may fit into your individual plan for “Elective Courses Materials Science.” Please discuss this plan with your mentor.
- There is a mandatory elective domain “Quantum Mechanics/Micromechanics” with a choice between the modules “Quantum Mechanics for Materials Science” and “Micromechanics for Materials Science.” The module not elected in this domain becomes part of the domain “Elective Courses Materials Science” and may be chosen there.
- The module “Concepts in Materials Physics” repeats contents from the Bachelor course Materials Science of TU Darmstadt and must therefore not be taken for credit by graduates of this course. Most international students that are not part of double degree programs are required to take this course.
- The durations of the exams and the courses’ credit points cannot be extracted correctly yet. The respective information may be obtained from the Studien- und Prüfungsplan (Schedule of Studies and Exams), available on the departmental web pages.
• Another consequence is that a table of contents is missing at this point. The ordering of modules within this guide can be found in the table on the following page
• Registration to the Master Thesis module is not possible online, but carried out by the study office.

PD Dr. Boris Kastening, study coordinator

Status as of October 16, 2020
<table>
<thead>
<tr>
<th>Domain</th>
<th>Module no.</th>
<th>Module name</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>11-01-4101</td>
<td>Research Lab I</td>
<td>WS & SS</td>
</tr>
<tr>
<td>Advanced Research Lab & Seminar</td>
<td>11-01-4103</td>
<td>Functional Materials</td>
<td>WS & SS</td>
</tr>
<tr>
<td>Surfaces and Interfaces</td>
<td>11-01-4105</td>
<td>Theoretical Methods in Materials Science</td>
<td>SS</td>
</tr>
<tr>
<td>Advanced Characterization Methods of Materials Science</td>
<td>11-01-4107</td>
<td>Quantitative X-ray Laboratory</td>
<td>SS</td>
</tr>
<tr>
<td>Quantum Mechanics for Materials Science</td>
<td>11-01-9811</td>
<td>Advanced Characterization Methods of Materials Science</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-4108</td>
<td>Micromechanics for Materials Science</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-4109</td>
<td>Concepts in Materials Physics</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-3029</td>
<td>Advanced Light Microscopy</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7342</td>
<td>Ceramic Materials: Syntheses and Properties. Part II</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-9811</td>
<td>Characterization Methods in Materials Science - Neutrons and Synchrotron</td>
<td>as needed/on request</td>
</tr>
<tr>
<td></td>
<td>11-01-8241</td>
<td>Chemical Sensors: Basics and Applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7562</td>
<td>Computational Materials Science</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2020</td>
<td>Computer Models of Solid Materials</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-9902</td>
<td>Course Processing of Conventional and Polymer Derived Silicon Ceramics</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-8291</td>
<td>Density Functional Theory: A Practical Introduction</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7300</td>
<td>Electrochemistry in Energy Applications I: Converter Devices</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7301</td>
<td>Electrochemistry in Energy Applications II: Storage Devices</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-02-9052</td>
<td>Elektronen kristallographie I</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-02-9053</td>
<td>Elektronen kristallographie II</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-8131</td>
<td>Engineering Microstructures</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-9063</td>
<td>Focused Ion Beam Microscopy: Basics and Applications</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-8202</td>
<td>Fundamentals and Techniques of Modern Surface Science</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2005</td>
<td>Fundamentals and Technology of Solar Cells</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2008</td>
<td>Graphene and Carbon Nanotubes - from fundamentals to applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7602</td>
<td>High Pressure Materials Synthesis</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2024</td>
<td>Hysteresis in Magnetic Materials</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2017</td>
<td>In-situ Transmission Electron Microscopy</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2016</td>
<td>Interfaces: Wetting and Friction</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2001</td>
<td>Magnetism and Magnetic Materials</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-7292</td>
<td>Materials Chemistry</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2022</td>
<td>Materials chemistry in electrocatalysis for energy applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7042</td>
<td>Materials Research with Energetic Ion Beams - Basic Aspects and Nanotechnology</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2004</td>
<td>Materials Science of Thin Films</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-3018</td>
<td>Mathematical Methods in Materials Science</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-9332</td>
<td>Mechanical Properties of Ceramic Materials</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2006</td>
<td>Mechanical Properties of Metals</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7070</td>
<td>Micromechanics and Nanostructured Materials</td>
<td>WS & SS</td>
</tr>
<tr>
<td></td>
<td>11-01-9090</td>
<td>Modern Steels for Automotive Applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-9812</td>
<td>Phase Transition in Materials</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-3031</td>
<td>Polymer Materials</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-3030</td>
<td>Polymer Processing</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2023</td>
<td>Porous ceramics for energy-related applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-8411</td>
<td>Properties of Ferroelectric Materials</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2019</td>
<td>Quantum Materials: Theory, Numerics, and Applications</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-7060</td>
<td>Scanning Probe Microscopy in Materials Science</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-9062</td>
<td>Scanning Transmission Electron Microscopy for Materials Science</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-8162</td>
<td>Semiconductor Interfaces</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-8211</td>
<td>Semiconductor Interfaces</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-4055</td>
<td>Seminar Research Topics in Materials Science</td>
<td>WS & SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2002</td>
<td>Spintronics</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-2021</td>
<td>Technology of Nanoobjects</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-01-3577</td>
<td>Thermodynamics and Kinetics of Defects</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td>11-02-6330</td>
<td>Transmission Electron Microscopy (TEM)</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>11-01-2018</td>
<td>Tunable properties in nanomaterials</td>
<td>SS</td>
</tr>
</tbody>
</table>
Module Description

Module name
Master Thesis

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-MT15</td>
<td>30 CP</td>
<td>900 h</td>
<td>900 h</td>
<td>1 Semester</td>
<td>Every semester</td>
</tr>
</tbody>
</table>

Language of instruction
Deutsch und Englisch

Person responsible for the module

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
</table>

2 Study content
- Familiarization with the subject and setup of a work schedule.
- Experimental and/or theoretical work on a scientific subject.
- Documentation of the results by authoring the Master thesis.
- Presentation of the results in a talk with subsequent scientific discussion.
- Public presentation of the results of the Master thesis with subsequent scientific discussion.

3 Learning outcomes
The student knows the foundations about a current, usually research related question in materials science. He/she knows structure and composition of scientific publications. He/she is able to apply acquired knowledge and qualifications to specific scientific topics with newly acquired methods and means in order to independently work on scientific problems in a sufficient depth and breadth. He/she is able to autonomously create documentations and presentations about his/her research work and results. The student is able to adequately present his/her results and to discuss and defend them in a public scientific environment.

4 Requirements for participation
Completion of
- an approved industrial internship
- 75 CP from compulsory and elective modules
- the Advanced Research Lab

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Abschlussprüfung, Abgabe, Standard)

6 Requirements on the award of credit points
Master thesis and public defense with discussion have to be passed.

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Abschlussprüfung, Abgabe, Gewichtung: 100%)
Module Description

Modul name
Research Lab I

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4101</td>
<td>4 CP</td>
<td>120 h</td>
<td>60 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Wolfgang Donner

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4011-pr</td>
<td>Research Lab I</td>
<td>0</td>
<td>Praktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

Study content
Experiments:
- Barriers at a Semiconductor/Metal Interface
- Thin Film Growth by PLD
- Surface Characterization with AFM
- X-Ray Fluorescence Analysis (XRF)

Learning outcomes
In experiments with partly open results, the candidate gets used to modern state-of-the-art scientific equipment in materials science. The experiments are performed using the equipment of the involved research groups, making sure that every student is exposed to scientific research groups.

The students are able to plan and realize materials synthesis and characterization experiments self-reliantly. They are able to analyze the data with complex data analysis programs. They can discuss and interpret the results in a complex material context.

Requirements for participation
none
Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Research Lab II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-4102</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr. rer. nat. Wolfgang Donner</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4012-pr</td>
<td>Research Lab II</td>
<td>0</td>
<td>Praktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

Study content

- XRD: Thin Films
- Characteristics of ferroelectric materials
- Organic thin film transistors (TFT)
- Dielectric response and optical materials properties
- Kinetics of diffusion-dominated transitions: hardening of aluminum alloys

Learning outcomes

In experiments with partly open results, the candidate gets used to modern state-of-the-art scientific equipment in materials science. The experiments are performed using the equipment of
the involved research groups, making sure that every student is exposed to scientific research groups. The students are able to plan and realize materials synthesis and characterization experiments self-reliantly. They are able to analyze the data with complex data analysis programs. They can discuss and interpret the results in a complex material context.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, Abgabe, Bestanden/Nicht bestanden)

6 Requirements on the award of credit points
attestations for all experiments have to be obtained

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Studienleistung, Abgabe, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: compulsory module

9 Literature
 to be provided in the introduction to each experiment

10 Comment
Cycle: each summer semester

Module Description

Modul name

Advanced Research Lab and Seminar

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4103</td>
<td>15 CP</td>
<td>450 h</td>
<td>450 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. rer. nat. Wolfgang Donner</td>
</tr>
</tbody>
</table>

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4008-se</td>
<td>Advanced Research Lab and Seminar</td>
<td>0</td>
<td>Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

2 Study content

Each working group offers scientific tasks which are part of their research program. These tasks
have no fixed solution, the solution has to be developed in an interplay between student and the involved members of the research group. The students have to hand out a written report of their lab work and present a talk summarizing their work.

3 Learning outcomes
The student is exposed to a controlled research activity within a real scientific working group. He gains the ability to understand a scientific problem from its different aspects, and how a limited research task is connected to more general and larger research objectives. The student gains experience to judge which individual type of research matches his/her individual interest and capabilities. As a result the student has the competence to choose a suited topic for the master thesis.

The students get acquainted to present their results in front of scientist which are working in the same field of research. The student learns to present in a clear and ordered way, understands how to use modern means of presentation such as animated images etc. The student gets used to defend his/her work against critical questions.

4 Requirements for participation
none

5 Forms of examination
Bausteinbegleitende Prüfung:
• [11-01-4008-se] (Studienleistung, Referat, Bestanden/Nicht bestanden)

6 Requirements on the award of credit points
passing of report and of oral talk

7 Grading
Bausteinbegleitende Prüfung:
• [11-01-4008-se] (Studienleistung, Referat, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: compulsory module

9 Literature
Provided according to the individual tasks. The student has to find the relevant literature as part of the task.

10 Comment
Cycle: The Advanced Research Lab may be started at any time.

Module Description

Modul name

Functional Materials
Module no. 11-01-4104 Credit points 6 CP Workload 180 h Self-study 120 h Duration 1 Semester Frequency Every 2. semester

Language of instruction Englisch

Person responsible for the module Prof. Dr.-Ing. Oliver Gutfleisch

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-1036-vl</td>
<td>Functional Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Study content

Functional Materials and specific devices:
- Conductivity in metals,
- Semiconductors,
- Thermoelectricity,
- Organic semiconductors,
- Ionic conductors,
- Dielectric and ferroelectric materials,
- Introduction to magnetism and magnetic materials,
- Magnetic materials and their applications (permanent and soft magnets),
- Magnetocaloric materials,
- Metal Hydrides,
- Superconductors.

3 Learning outcomes

Gaining knowledge of the most important principles in the before mentioned material classes. Focusing not only on the physical principles but also materials synthesis and application of the most important functional materials. Furthermore applications of these material classes will be discussed. The students will be able to develop and characterise simple devices constructed from the above mentioned materials.

4 Requirements for participation

recommended: good knowledge of Materials Science I-VI (Bachelor course), knowledge of basic solid state physics

5 Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points

passing of exam

7 Grading

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module

M.Sc. Materials Science: Mandatory Course Materials Science. In order to avoid doubling of curricular elements, students who graduated from TU Darmstadt with a Bachelor in Materials Science within the study regulations from 2008 are NOT allowed to take this module for credit and
must instead take more Elective Courses Materials Science to compensate for the missing 6 CP.

9 Literature

10 Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Surfaces and Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-4105</td>
</tr>
<tr>
<td>Credit points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>105 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

| Language of instruction | Englisch |
| Person responsible for the module | Prof. Dr. Wolfram Jaegermann |

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7922-vl</td>
<td>Surfaces and Interfaces</td>
<td>0</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Study content

- surfaces of solids: thermodynamics of surface formation, structure of surfaces, electronic structure of surface and surface potentials
- kinetics of surface reactions: physisorption and chemisorption, surface diffusion, surface reactions and catalysis
- internal surfaces: structural models, thermodynamics of internal surfaces, epitaxy and growth modes
- solid/electrolyte interfaces: thermodynamics and electrochemical double layers, thermodynamics of electrochemical reactions, kinetics of electrochemical reactions, corrosion and corrosion modes

3 Learning outcomes
The student is able to understand and treat the specific effects of surfaces and interfaces in materials science, he/she differentiates between thermodynamically and kinetically determined properties, he/she knows the important terms and definitions and related theoretical concepts used in surface/interface science and electrochemistry, he/she has reached a conceptual understanding how surfaces/interfaces affect the properties of presented devices, he/she will reach a materials science related understanding of electrochemical processes, he/she will be able to transfer this knowledge to any future envisaged problems and materials, the student has reached the competence to differentiate between bulk and surface effects in devices and to correlate them with material’s properties, he/she is qualified to evaluate experimental and theoretical methods in his/her possible future research involving surface/interface effects and electrolyte interfaces, he/she will have the competence to follow advanced textbooks and scientific literature.

4 **Requirements for participation**
 recommended: elementary knowledge in physics, especially quantum mechanics and solid state physics

5 **Forms of examination**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
 passing of exam

7 **Grading**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 **Usability of the module**
 M.Sc. Materials Science: compulsory module

9 **Literature**
 5. E.S. Machlin, "Thermodynamics and Kinetics", Columbia University New York

10 **Comment**
 Cycle: each winter semester
Module Description

Modul name

Theoretical Methods in Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4106</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. Karsten Albe

1 **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9314-ue</td>
<td>Exercises Theoretical Methods in Materials Science</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-9314-vl</td>
<td>Theoretical Methods in Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 **Study content**

- Balance equations of mechanics and thermodynamics
- Free energy of non-uniform materials
- Fluctuations and stability
- Linear non-equilibrium thermodynamics
- Transition state theory and transport processes
- Statistical mechanics models for materials
- Quantum statistical mechanics
- Optimization techniques
- Partial differential equations in materials science
- Boundary value problems in materials science

3 **Learning outcomes**

The student gains fundamental insights into the key concepts of non-equilibrium thermodynamics, continuum mechanics and (quantum) statistical mechanics relevant for materials science. He/she is able to identify and apply appropriate theoretical concepts for solving materials science problems related to properties and processing of materials. The students are acquainted to numerical methods and capable to solve boundary value problems, ordinary differential equations and transport equations. His/her knowledge allows him/her to follow advanced textbooks and scientific literature on theoretical methods in materials science.

4 **Requirements for participation**

recommended: module „Quantum Mechanics for Materials Science“ or module "Micromechanics for Materials Science"

5 **Forms of examination**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: compulsory module

9 Literature
2. P. Haupt, Continuum Mechanics and Theory of Material, Springer

10 Comment
Cycle: each summer semester

Module Description

Modul name

Advanced Characterization Methods of Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4107</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Wolfgang Donner

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9313-ue</td>
<td>Exercises Advanced Characterization Methods of Materials Science</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-9313-vl</td>
<td>Advanced Characterization Methods of Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Study content
- Small Angle Scattering
- Scattering from Amorphous Materials
- Diffraction from Nanocrystals
- Thin Film Diffraction
- Photoelectron Spectroscopy
- Spectral Photometry
• Atomic Absorption Spectrometry
• Optical Emission Spectrometry
• X-ray Fluorescence Analysis
• Neutron Activation Analysis
• Proton-Induced X-Ray Emission
• Rutherford Backscattering Spectrometry
• Nuclear Reaction Analysis
• Elastic Recoil Detection

3 **Learning outcomes**
The student knows the fundamentals of various methods of structural and elemental analysis, their advantages and disadvantages. He/she is able to select an appropriate technique for a given analytical problem. The course prepares the students for the practical courses, where they perform analytical experiments on their own. The methods presented in the course represent the state of the art in scattering and spectrometry; therefore the students will be able to critically judge the validity of experimental results in the scientific literature.

4 **Requirements for participation**
recommended: module „Quantum Mechanics for Materials Science”

5 **Forms of examination**
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 **Grading**
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 **Usability of the module**
M.Sc. Materials Science: compulsory module

9 **Literature**
1. Small Angle Scattering, Glatter & Kratky, ebook
2. Underneath the Bragg Peaks, Egami & Billinge, ebook
3. High Resolution X-ray Scattering, Holy, Pietsch, Baumbach, Springer
4. Structural and Chemical Analysis of Materials, Eberhard, Wiley
5. An Introduction to Surface Analysis by XPS and AES, Wolstenholme, ebook
6. Handbook of X-Ray Spectrometry, Marcel Dekker
7. Atomic and Nuclear Analytical Methods, Verma, Springer
8. Quantitative Chemical Analysis, Harris, Palgrave Mcmillan
9. Chemical Analysis, modern Instrumentation, Methods and Techniques, Rousseac

10 **Comment**
Cycle: each summer semester
Module Description

Modul name
Quantum Mechanics for Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4108</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction: Englisch
Person responsible for the module: Prof. Dr. rer. nat. Hongbin Zhang

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4004-ue</td>
<td>Exercises Quantum Mechanics for Materials Science</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-4004-vl</td>
<td>Quantum Mechanics for Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Historical background
- Diffraction experiments
- Schrödinger equation and quantum mechanical properties
- The H-atom and H2-molecule, tunneling, harmonic oscillator
- LCAO model: from finite to infinite systems, the Bloch function
- Density of states in two and three dimensions, population density, Fermi statistics
- Bandgaps and their origin
- Transport equation of electrons in external fields
- Theory of free electrons

Learning outcomes

The successful students are able to recognize basic quantum mechanical phenomena. The students are able to derive and calculate simple quantum mechanical problems and are able to use them in daily problems. The students will be able to understand the nature of binding and the electronic structure of atoms, molecules and solids. The students are qualified to apply the theory to the evaluation of the electronic structure of atoms, molecules and solids and are able to describe charge transport in a quantum mechanical manner. The students have a first insight into modern research in quantum mechanics and their knowledge allows them to follow advanced textbooks and scientific literature.

Requirements for participation

recommended: Bachelor modules "Physical Chemistry I" and "Materials Science VI & VII"

Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points

passing of exam
Grading

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

Usability of the module

M.Sc. Materials Science: choice of this module or 11-01-4109 Micromechanics for Materials Science

Literature

Comment

Cycle: each winter semester

Module Description

Modul name

Micromechanics for Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4109</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

- **Language of instruction**: Englisch
- **Person responsible for the module**: Prof. Ph. D. Bai-Xiang Xu

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7050-ue</td>
<td>Exercises in Micromechanics for Materials Science</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-7050-vl</td>
<td>Micromechanics for Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

This lecture deals with fundamentals of micromechanics in the framework of elasticity and plasticity theory. Important topics include: Basics of elasticity, plasticity, viscoplasticity and crystal plasticity, Theory of configurational force (including J-Integral), Micro-macro transition and homogenization, and damage mechanics.

Learning outcomes

The successful students can interpret the elastic and plastic behavior of a material using the continuum theory, and describe the stress situation around certain microstructure e.g. at crack tips and near defects. They can also apply the basic concept of homogenization to calculate the effective properties of heterogeneous material. They will have the competence to follow advanced textbooks.
and scientific literature on nonlinear continuum mechanics and composite mechanics.

4 **Requirements for participation**
 recommended: basics of mathematics and elastomechanics

5 **Forms of examination**

 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
 passing of exam

7 **Grading**

 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 **Usability of the module**

 M.Sc. Materials Science: choice of this module or 11-01-4108 Quantum Mechanics for Materials Science

9 **Literature**

10 **Comment**

 Cycle: each winter semester

Module Description

Modul name

Concepts in Materials Physics

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2009</td>
<td>6 CP</td>
<td>180 h</td>
<td>135 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. rer. nat. Robert Stark

1 **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2009-ue</td>
<td>Exercise: Concepts in Materials Physics</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-2009-vl</td>
<td>Concepts in Materials Physics</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>
Study content
Description the crystalline state of solids, atomic cohesion and crystal bonding, lattice, reciprocal lattice, x-ray diffraction and determination of the crystal structure, spectroscopy, lattice vibrations (phonons), thermal properties of solids, (quasi) free electron theory of metals, electronic structure, semiconductors, magnetism.

Learning outcomes
The student is able to describe a crystal as a lattice with a pattern and can explain x-ray diffraction patterns using the concept of the reciprocal lattice. He/She has gained an understanding of diffraction of electromagnetic waves, electron waves or collective excitations in a lattice. In particular the students are able to explain fundamental material properties in the appropriate pictures of quasi-particles and collective excitations. He/She has gained an understanding for the relation between transport properties, crystal structure, and electronic structure.

Requirements for participation
none

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

Usability of the module
M.Sc. Materials Science: Compulsory module for students with a respective obligation. Students without such an obligation may take this module for credit only if they are NOT Bachelor graduates in Materials Science from TU Darmstadt.

Literature

Comment
Cycle: each winter semester.
This module is not allowed as an elective course for graduates with a Bachelor in Materials Science from TU Darmstadt.
Module Description

Advanced Light Microscopy

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-3029-vl</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. rer. nat. Robert Stark</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-3029-vl</td>
<td>Advanced Light Microscopy</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

The lecture covers topics in materials optics and gives an overview on how to use light in order to characterize materials. Conventional light microscopy methods are discussed with respect to their applications in (bio)materials science. Theoretical and practical aspects of modern super-resolution techniques are discussed.

1. Electromagnetic Waves at interfaces (Electromagnetic waves; Reflection and transmission: External reflection, Internal reflection, Frustrated total internal reflection (FTIR), Total internal reflection microscopy)
2. Electromagnetic properties of materials (The dielectric response; The Lorentz model of dielectrics; Drude's model for metals)
3. Birefringence (Optical Anisotropy; Anisotropic dispersion; Uniaxial Materials; Biaxial and other Materials)
4. Optical Activity, Electro Optics, and Magneto Optics (Optical activity; Electro-Optics; Magneto-Optic Effects)
5. Paraxial Optics: Thin Lenses, Thick Lenses, and ABCD Formalism (Curved mirrors; Thin Lenses; Thick Lenses; ABCD Matrices)
6. Optical aberrations and stops (Aberrations; Stops in Optical Systems; Optical devices)
7. Widefield Microscopy (The compound microscope; Resolution; Bright field microscopy; Dark field; Phase contrast; Differential Interference Contrast (DIC); Polarisation microscopy; Fluorescence microscopy)
8. Confocal Microscopy (The confocal principle; Scanning; The pinhole; Airy Scanning)
9. Super resolution microscopy – Beating Abbe’s limit (3-D methods based on nonlinear optical phenomena, Common ideas, 2-photon excitation, Second harmonic generation; 4Pi-microscopy: Looking at the specimen from both sides; Structured illumination microscopy (SIM); Stimulated emission depletion (STED) microscopy; Stochastic optical reconstruction microscopy (STORM) or (fluorescence) photoactivation localization microscopy ((F)PALM))
10. Scanning nearfield optical microscopy (SNOM/NSOM) (The basic idea; Near field probes; Aperture SNOM; Scattering SNOM (s-SNOM))
11. Raman Microscopy (Raman Scattering; Raman microscopy; Symmetry of molecular vibrations; Symmetry of phonon modes)

If time permits:
12. Light Sources, Lasers and Coherence

Learning outcomes

Students understand the interaction of electromagnetic waves with ordered materials, in particular...
with non-isotropic materials in terms of polarization, electro- and magneto optics, optical activity and photon-phonon interaction. The student is able to design a simple optical device in order to perform optical measurements on materials, in terms of defining position and quality of lenses, filters, stops, mirrors, light sources and detectors. The student is able to handle a light microscope in order to achieve a homogenously exposed image with high contrast of typical specimen in (bio)materials science. The student understands the reason for Abbe’s resolution limit and knows how this limitation can be overcome in specific cases. The student is able to choose the appropriate super-resolution technique for a specific problem in (bio)materials science.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
1. Eugene Hecht, Optics, Pearson, 5th Ed 2017

10 Comment
Cycle: each winter semester

Module Description

Ceramic Materials: Syntheses and Properties. Part I

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8191</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. Ralf Riedel

1 Courses of the module
<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8191-vl</td>
<td>Ceramic Materials: Syntheses and Properties. Part I</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Study content**
- Introduction: Definitions; Classes of Ceramic Materials; Applications
- Engineering Ceramics: Preparation, Microstructure, Properties
- Thermodynamics (Phase Diagrams, Interface Energies); Kinetics
- Synthesis Techniques of Ceramic Powders
- Carbides: Silicon Carbide (SiC), Boron Carbide (B4C), Titanium Carbide (TiC)
- Nitrides: Silicon Nitride (Si3N4), Aluminum Nitride (AlN), Boron Nitride (BN), Titanium Nitride (TiN)
- Borides, Silicides
- Oxides: Aluminum Oxide (Al2O3), Zirkonium Dioxide, Multicomponent Oxides

3 **Learning outcomes**
The student has gained an overview on and remembers different synthesis techniques for ceramic materials. Furthermore, he/she has gained the competence to evaluate the (micro)structure-properties relationship for ceramic materials. He/she is able to correlate different classes of ceramic materials with specific properties and applications. The student has the competence to evaluate experimental and theoretical methods for goal-oriented research in the area of ceramics. The student has a first insight in modern preparative techniques for ceramic materials and a beginner's competence to follow advanced textbooks and scientific literature.

4 **Requirements for participation**
none

5 **Forms of examination**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 **Grading**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 **Usability of the module**
M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**
1. Allgemeine Lehrbücher für anorganische Chemie
Module Description

Modul name

Ceramic Materials: Syntheses and Properties. Part II

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7342</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Dr. Emanuel Ionescu

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7342-vl</td>
<td>Synthesis and Properties of Ceramic Materials II</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Powder Processing
- Shaping Techniques
- Pyrolysis Processes
- Sintering
- Silicon carbide, silicon nitride, silicon oxycarbides, silicon carbonitrides

3 Learning outcomes
The student has gained practical experience with and remembers different processing techniques for ceramic materials. Furthermore, he/she has gained the competence to correlate the relationship between (micro)structure/phase composition of ceramics and their property profiles. The student gets acquainted with modern processing techniques for ceramic materials and is able to follow advanced textbooks and scientific literature.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
Module Description

Characterization Methods in Materials Science: Neutrons and Synchrotron

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9811-vl</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. rer. nat. Wolfgang Donner

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9811-vl</td>
<td>Characterization Methods in Materials Science II - Neutrons and Synchrotron</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Synchrotron and Neutron Sources
- Neutron Reflectivity
- Crystal Truncation Rod Diffraction
- Diffuse Scattering
- Inelastic Scattering
- Quasi-elastic Scattering
- Coherent Diffraction and Reconstruction
3 Learning outcomes
The students learn about the technology and possibilities of large research facilities. They are able to relate the specific advantages of Neutron and Synchrotron sources over conventional lab-based radiation sources to modern analytical methods. The course enables the students to associate specific problems in Materials Science to analytical techniques that are available at large scale facilities. The students are qualified to design specific experiments at Neutron and Synchrotron sources and evaluate the resulting data. They acquired a competence to critically evaluate the outcome of large scale experiments and to comment on results presented in the literature.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
1. Elements of Modern X-ray Physics, Als-Nielsen & McMorrow
2. Diffuse X-ray Scattering and Models of Disorder, Welberry
3. Diffuse X-ray Scattering from Crystalline Materials, Nield & Keen

10 Comment
Cycle: as needed/on request

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Sensors: Basics and Applications</td>
<td></td>
</tr>
<tr>
<td>Modul name</td>
<td>Chemical Sensors: Basics and Applications</td>
</tr>
<tr>
<td>Module no.</td>
<td>11-01-8241</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr. Ralf Riedel</td>
</tr>
</tbody>
</table>
1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8241-vl</td>
<td>Chemical Sensors: Basics and Applications</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Chemical and Biological sensors
- Materials and Methods in Chemical sensor manufacturing.
- Enzymes and Enzymatic sensors.
- Nucleic Acids in Chemical Sensors.
- Nanomaterial application in chemical sensors.
- Thermochemical sensors
- Optical sensors
- Chemical sensors based on semiconductor electronic devices
- Gas sensors
- Potentiometric sensors

3 Learning outcomes
The students have an overview of the different types of chemical sensors. They are able to describe the operation principles for chemical sensors and give examples of their applications. They are able to decide which sensor is appropriate for a given problem/application.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
Module Description

Modul name

Computational Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7562</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. Karsten Albe

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7562-ue</td>
<td>Exercise Computational Materials Science</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-7562-vl</td>
<td>Computational Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content

- Introduction to Basic Concepts of Thermodynamics and Statistics
- Molecular Dynamics Method: Principles
- Equilibrium Thermodynamics and MD-Simulations
- Overview of Analytic Potentials
- Transport Processes and MD-Simulations
- Monte-Carlo Methods
- Kinetic Monte-Carlo Methods
- Bridging Time Scales: Accelerated Dynamics
- Foundations of Density Functional Theory
- Kohn-Sham Ansatz
- Functionals for Exchange and Correlation
- Electronic Structure Calculations: PlaneWaves, LCAO, ...

3 Learning outcomes

The student knows fundamentals, possible applications and limitations of computational methods relevant in materials science. He/she has a basic understanding of the underlying numerical methods and algorithms and has gained practical experience with standard software packages like LAMMPS for molecular dynamics simulations. ABINIT for electronic structure calculations and software tools for data analysis (OVITO). He/she will have the competence to follow advanced textbooks and scientific literature on atomistic methods in materials science.

4 Requirements for participation

recommended: modules “Quantum Mechanics for Materials Science” and “Theoretical Materials Science”

5 Forms of examination

Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
2. P. Haupt, Continuum Mechanics and Theory of Material, Springer

10 Comment
Cycle: each winter semester

Module Description

Modul name
Computer Models of Solid Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2020</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Dr. rer. nat. Elaheh Ghorbani

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2020-vl</td>
<td>Computer Models of Solid Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
This course involves hands-on sessions focusing on the following essential topics in solid state materials through working with interactive models:
- Crystal structures of solids
- Lattice dynamics
- Free electron gas model (FEG)
- Energy bands of electrons in periodic potentials
- Electronic transport in partially filled bands
- Semiconductor crystals
- Ising-Model and ferromagnetism
- Dislocations

3 **Learning outcomes**
Through numerous qualitative and quantitative exercises, the students have gained a visual picture of condensed systems' behavior. Moreover, via active participation the students have acquired the ability to develop the conceptual framework for each topic, which leads them to gain critical ideas of solid state phenomena and to deliver proper numerical and perceptual analyses of physical systems.

4 **Requirements for participation**
none

5 **Forms of examination**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 **Grading**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 **Usability of the module**
M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Course Processing of Conventional and Polymer Derived Silicon Ceramics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-9902</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Person responsible for the module</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9902-ku</td>
<td>Course Processing of Conventional and Polymer Derived Silicon Ceramics</td>
<td>0</td>
<td>Kurs</td>
<td>1</td>
</tr>
</tbody>
</table>

Study content
- Powder Processing
- Shaping Techniques
- Pyrolysis Processes
- Sintering
- Silicon carbide, silicon nitride, silicon oxycarbides, silicon carbonitrides

Learning outcomes
The student has gained practical experience with and remembers different processing techniques for ceramic materials. Furthermore, he/she has gained the competence to correlate the relationship between (micro)structure/phase composition of ceramics and their property profiles. The student gets acquainted with modern processing techniques for ceramic materials and is able to follow advanced textbooks and scientific literature.

Requirements for participation
none

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature
Module Description

<table>
<thead>
<tr>
<th>Module name</th>
<th>Density Functional Theory: A Practical Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-8291</td>
</tr>
<tr>
<td>Credit points</td>
<td>5 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>105 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr. Karsten Albe</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8291-ue</td>
<td>Exercises Density Functional Theory: A Practical Introduction</td>
<td>0</td>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>11-01-8291-vl</td>
<td>Density Functional Theory: A Practical Introduction</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces.

In this lecture the basic theoretical concepts underlying DFT calculations are introduced. Practical applications of DFT, focusing on planewave DFT, are discussed and hands-on training is provided using the open-source code ABINIT.

The course is a practical introduction for students of materials science, physics and chemistry who want to use DFT in their work.

- Short repetition of Quantum Mechanics (infinitely deep well, harmonic oscillator, H atom, Hartree-Fock approximation for interacting systems)
- Basic concepts in DFT (Hohenberg-Kohn theorems, Kohn-Sham ansatz, local-density approximation)
- Functioning of DFT planewave pseudopotential codes
- Tools for electronic-structure analysis (density, density of states, Bader charge analysis, band structure)
- Calculating bulk properties
- Calculating defect (free) energies (surfaces, interfaces, point defects)
- Calculating kinetic energy barriers (nudged-elastic-band method)
- Modeling complex structure: ab initio molecular dynamics, simulated annealing, basin hopping and other structure search techniques.
- Density-functional perturbation theory: application to phonon band-structures
- Improved band-structure methods: LDA+U, hybrid functionals and the GW method.

Learning outcomes

After successfully completing this course, the student will be in the position to independently run DFT calculations using the ABINIT code and the PYTHON based Atomic Simulation Environment package. Specifically he/she will learn how to compute bulk elastic properties, surface/interface/defect (free) energies, electron and phonon band-structures and transition
barriers for chemical reactions. In addition, the student will learn how to use density-of-states, electron densities and Kohn-Sham orbitals as tools for electronic-structure analysis. Finally, he/she will be introduced to basic concepts of DFT (Hohenberg-Kohn theorems, Kohn-Sham ansatz, local density approximation of the exchange-correlation functional) and of the functioning of planewave-pseudopotential codes.

4 Requirements for participation
recommended: background in materials science, physics, or chemistry on the bachelor level

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
2. P. Haupt, Continuum Mechanics and Theory of Material, Springer

10 Comment
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Electrochemistry for Energy Applications I: Fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-7300</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr. Wolfram Jaegermann</td>
</tr>
</tbody>
</table>
1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7300-vl</td>
<td>Electrochemistry for Energy Applications I: Fundamentals</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content

- Electrochemical Thermodynamics
- Electrochemical Kinetics
- Electrochemical Methods
- Fuel cells
- Electrolysis

3 Learning outcomes

The student will be introduced to the main concepts of heterogeneous electrochemistry (electrodics), basic electrochemical methods and main materials science questions related to the use and application of electrochemical converter devices. He/she will learn to evaluate experimental and theoretical results obtained with different electrochemical, surface science and theoretical techniques, and obtain a first insight in modern electrodics applied for continuing experimental work in this field. Moreover, he/she obtains basic competence to follow advanced textbooks and scientific literature.

4 Requirements for participation

recommended: modules “Surfaces and Interfaces” and “Quantum Mechanics for Materials Science”

5 Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points

passing of exam

7 Grading

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. G. Wedler; Lehrbuch der Physikalischen Chemie
2. P.W. Atkins; Physikalische Chemie (Physical Chemistry)
3. C.H. Hamann, W. Vielstich; Elektrochemie (Electrochemistry)
4. W. Schmickler; Grundlagen der Elektrochemie
5. W. Vielstich, A. Lamm, H. Gasteiger (eds); Handbook of Fuel Cells: Fundamentals, Technology, Application
Module Description

Modul name

Electrochemistry for Energy Applications II

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7301</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. Wolfram Jaegermann

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7301-vl</td>
<td>Electrochemistry for Energy Applications II</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Solid State Ionics
- Battery Fundamentals
- Li-Ion Batteries
- Semiconductor Electrochemistry
- Electrochemical Solar Cell
- Photocatalysis
- Photoelectrochemical Hydrogen Production

Learning outcomes

The student will be introduced to the main concepts of heterogeneous electrochemistry (electrodics), solid state ionics and main materials science questions related to the use and application of electrochemical storage and converter devices. He/she will learn to combine electrochemical concepts and solid state concepts for dealing with energy devices and to evaluate experimental and theoretical results obtained with different electrochemical, surface science and theoretical techniques, and obtain a first insight in modern electrodics applied for continuing experimental work in this field. Moreover, he/she obtains basic competence to follow advanced textbooks and scientific literature.

Requirements for participation

Recommended: modules “Surfaces and Interfaces”, “Quantum Mechanics for Materials Science” and “Electrochemistry in Energy Applications I: Converter Devices”

Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

Requirements on the award of credit points
Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature
1. G. Wedler; Lehrbuch der Physikalischen Chemie
2. C.H. Hamann, W. Vielstich; Elektrochemie (Electrochemistry)
3. J. Maier, Physical Chemistry of Ionic Materials
4. Thomas B. Reddy, David Linden, Handbook of batteries
5. Robert A. Huggins, Advanced Batteries, Materials Science Aspects
7. R. Memming; Semiconductor Electrochemistry
8. C.A. Grimes, O.K. Varghese, S. Ranjan; Light, Water, Hydrogen

Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Electron Crystallography I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-02-9052</td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Dr. rer. nat. Ute Kolb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses of the module</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course no.</td>
<td>11-02-9052-vu</td>
</tr>
<tr>
<td>Course name</td>
<td>Electron Crystallography I</td>
</tr>
<tr>
<td>Workload (CP)</td>
<td>0</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Vorlesung und Übung</td>
</tr>
<tr>
<td>Contact hours</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Basic concepts in crystallography</td>
<td></td>
</tr>
<tr>
<td>- Diffraction theory (kinematic, dynamic)</td>
<td></td>
</tr>
<tr>
<td>- Electron diffraction methods (parallel, convergent, electron beam precession)</td>
<td></td>
</tr>
<tr>
<td>- Tomography (direct, reciprocal)</td>
<td></td>
</tr>
<tr>
<td>- Phase problem and experimental statistic solutions</td>
<td></td>
</tr>
<tr>
<td>- HRTEM (simulation of images and diffraction), holography</td>
<td></td>
</tr>
<tr>
<td>- Strategies for structure solution (direct methods, simulated annealing, charge flipping)</td>
<td></td>
</tr>
<tr>
<td>- Structure refinement, kinematic, dynamic</td>
<td></td>
</tr>
</tbody>
</table>

passing of exam
Learning outcomes
This lecture covers in the beginning basic topics of crystallography and diffraction theory. It discusses the major electron diffraction methods, as well as real space imaging (HRTEM), necessary for the structural characterization of nanoscale materials. A central topic is the applicability of the different methods to materials with diverse degree of order. In addition it will be shown how other methods for structural characterization like X-ray- or neutron scattering or NMR can be combined with electron diffraction.

Requirements for participation
recommended: module "Introduction to Scanning Electron Microscopy"

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature
5. Optik, E. Hecht, Oldenburg Verlag, 3. Auflage (2001)

Comment

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Electron Crystallography II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-02-9053</td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>
1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-02-9053-vu</td>
<td>Electron Crystallography II</td>
<td>0</td>
<td>Vorlesung und Übung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Coupling with other methods (X-ray powder diffraction, NMR, Spectroscopy, EXAFS, EXELFS)
- Special crystallographic features (super structure, incommensurate compounds)
- Handling of beam sensitive material
- Diffraction on defects and description refinement (DISCUS)
- Electron powder diffraction and pair distribution functions (PDF)
- Phase analysis using electron diffraction
- Precession electron diffraction (PED)
- Convergent beam electron diffraction (CBED)
- Ptychography
- Diffractive imaging

3 Learning outcomes
In this lecture basic electron microscopic methods for structural characterization will be combined with further methods for structure analysis (X-ray diffraction, neutron diffraction, NMR). In addition new special electron crystallographic techniques will be presented. With this tool box a broad range of methods for structure analysis of nano scaled material is provided supporting the understanding of materials physical properties.

4 Requirements for participation
Introduction to Transmission Electron Microscopy recommended

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirements on the award of credit points
Passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
Module Description

Modul name

Engineering Microstructures

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8131-vl</td>
<td>4 CP</td>
<td>120 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Apl. Prof. Dr.-Ing. Clemens Müller

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8131-vl</td>
<td>Engineering Microstructures - Processing, Characterization and Application</td>
<td>0</td>
<td>Vorlesung</td>
<td>1</td>
</tr>
</tbody>
</table>

Study content

- Introduction (dislocations, subgrain structures, grain boundaries, phase boundaries)
- Microstructural analysis (microscopy and diffraction methods)
- Correlation between microstructure and mechanical properties
- Thermo-mechanical treatment (theory and processing)
- Recovery, recrystallization and grain growth
- Severe plastic deformation
- Microstructures for structural applications

Learning outcomes

The student gains an overview of the variety of methods for microstructural engineering of metals and alloys including their thermodynamic principles and applications. The student remembers the potential and limits of state-of-the-art methods for microstructural analysis and is able to assess the most qualified method(s) for specific issues. He/she is qualified to evaluate experimental and theoretical methods for goal-oriented research in the area microstructural engineering by annealing, thermo-mechanical treatment or severe plastic deformation. The student has a beginner's competence to follow advanced textbooks and scientific literature.

Requirements for participation

recommended: Bachelor modules “Materials Science III: Real Crystals and their Properties” and “Materials Science IV: Mechanical Properties”
Forms of examination
Moduleabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Moduleabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature
3. G. Gottstein, Physikalische Grundlagen der Materialkunde (in German), Springer (2007)

Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Module name</th>
<th>Focused Ion Beam Microscopy: Basics and Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-9063</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Self-study</td>
<td>120 h</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Dr. rer. nat. Leopoldo Molina-Luna

<table>
<thead>
<tr>
<th>Courses of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course no.</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>11-01-9063-vl</td>
</tr>
</tbody>
</table>

Study content

Learning outcomes

Requirements for participation
5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Standard)

6 Requirements on the award of credit points

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

8 Usability of the module

9 Literature

10 Comment

Module Description

<table>
<thead>
<tr>
<th>Modul no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8202</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Enslisch

Person responsible for the module
Prof. Dr. Wolfram Jaegermann

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8202-vl</td>
<td>Fundamentals and Techniques of Modern Surface Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Vacuum techniques
- Auger-electron spectroscopy (AES)
- X-ray photoelectron spectroscopy (XPS)
- Ultraviolett photoelectron spectroscopy (UPS)
- Inverse photoemission spectroscopy (IPE, BIS)
- Electron energy loss spectroscopy (ELS, HREELS)
- X-ray absorption spectroscopy (XAS, NEXAFS)
- Thermal desorption spectroscopy (TDS)
- High energy electron diffraction (LEED)
Learning outcomes

The student has been introduced to the main methods used in modern surface science, he/she is familiar with the basic physical processes used for the different techniques, he/she has learned for which problems and how the techniques are applied in surface science, she/he has been introduced to the main materials science questions related to the use and application of these techniques, the student has the competence to judge when the application of these techniques is of use in his/her future scientific life, he/she is qualified to evaluate experimental and theoretical results obtained with these techniques, the student has obtained a first insight in modern surface science research and techniques applied for continuing experimental work in this field, he/she has obtained basic competence to follow advanced textbooks and scientific literature.

Requirements for participation

Recommended: modules "Quantum Mechanics for Materials Science", basic knowledge of surface and interface science

Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points

Passing of exam

Grading

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

Usability of the module

M.Sc. Materials Science: Elective Courses Materials Science

Literature

1. W. Mönch: Semiconductor Surfaces and Interfaces (Springer, 2001)

10 Comment
Cycle: each winter semester

Module Description

Modul name
Fundamentals and Technology of Solar Cells

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2005</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. Wolfram Jaegermann

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8401-vl</td>
<td>Fundamentals and Technology of Solar Cells</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- energy resources and scenarios
- fundamentals of semiconductor and device physics
- preparation and properties of single crystalline Si cells, compound semiconductor cells, high performance cells, thin film solar cells

3 Learning outcomes
The student has gained the information to address and judge energy topics in their relevance for future technology areas, he/she has gained a broad understanding of semiconductor physics as background of the working principles of solar cells, he/she has been introduced to the materials science challenges given for the different cell technologies, he/she has learned which preparation and processing techniques are involved in the manufacturing and improvement of solar cells, he/she is qualified to evaluate experimental and theoretical methods for possible future research in solar cell basic science and technology, he/she has obtained the competence to follow advanced textbooks and scientific literature.

4 Requirements for participation
recommended: modules “Surfaces and Interfaces”, “Quantum Mechanics for Materials Science”, “Electrochemistry in Energy Applications I: Converter Devices”

5 Forms of examination
Bausteinbegleitende Prüfung:
- [11-01-8401-vl] (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Bausteinbegleitende Prüfung:

- [11-01-8401-vl] (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
1. W. Jaegermann, Solar Cells, Lecture material (latest version 2010)
2. Basic Semiconductor Physics Books e.g. Sze, Semiconductor Physics
3. Different specialized books and reviews on solar cells, to be announced

10 Comment
Cycle: each summer semester

Module Description

Modul name
Graphen and Carbon Nanotubes - from fundamentals to applications

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2008</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. Ralph Michael Krupke

<table>
<thead>
<tr>
<th>Courses of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course no.</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>11-01-2008-vl</td>
</tr>
</tbody>
</table>

2 Study content
- Synthesis of graphene and carbon nanotubes
- Structure – property correlation
- Electrical and optical properties
- Device fabrication
- Potential applications

3 Learning outcomes
The student has gained a basic knowledge in the fundamentals of graphene and carbon nanotubes. He/she is able to understand how the atomic structure of a carbon allotrope determines its properties. He/she is able to understand the electrical and optical properties of nanocarbons and its implications for future applications. He/she is qualified in characterisation techniques and device fabrication techniques. The student has the competence to follow scientific literature and the knowledge that is required to conduct research in the field.
4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>High Pressure Materials Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-7602</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. Ralf Riedel

1 Courses of the module

<p>| Course no. | Course name | Workload (CP) | Form of Contact |</p>
<table>
<thead>
<tr>
<th>2</th>
<th>Study content</th>
</tr>
</thead>
</table>
| | • Pressure as a thermodynamic parameter; thermodynamics of deformation; equation of state
| | • Phase transitions and chemical reactions
| | • High-pressure apparatuses
| | • Chemistry at high pressures: synthesis of new materials |

<table>
<thead>
<tr>
<th>3</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The student has gained a basic knowledge on high-pressure physics and materials synthesis techniques. He/she is able to identify the advantages and disadvantages of each HP preparative method for different applications and needs. He/she is qualified to evaluate high-pressure techniques for the synthesis of structural and functional materials with new dense structures. The student has a first insight in modern high-pressure research and a beginner's competence to follow advanced textbooks and scientific literature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Requirements for participation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Forms of examination</th>
</tr>
</thead>
</table>
| | Modulabschlussprüfung:
| | • Modulprüfung (Fachprüfung, Fachprüfung, Standard) |

<table>
<thead>
<tr>
<th>6</th>
<th>Requirements on the award of credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passing of exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Grading</th>
</tr>
</thead>
</table>
| | Modulabschlussprüfung:
| | • Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1) |

<table>
<thead>
<tr>
<th>8</th>
<th>Usability of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.Sc. Materials Science: Elective Courses Materials Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle: each summer semester</td>
</tr>
</tbody>
</table>
Module Description

Modul name

Hysteresis in Magnetic Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2024</td>
<td>4 CP</td>
<td>120 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2024-vl</td>
<td>Hysteresis in Magnetic Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>0</td>
</tr>
</tbody>
</table>

2 Study content

3 Learning outcomes

4 Requirements for participation

5 Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points

7 Grading

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module

9 Literature

10 Comment
Module Description

In-situ Transmission Electron Microscopy

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2017</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction: Englisch

Person responsible for the module: Prof. Dr. rer. nat. Christian Klaus Ulrich Kübel

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2017-vl</td>
<td>In-situ Transmission Electron Microscopy</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content

In-situ electron microscopy techniques are becoming increasingly established to understand fundamental processes during synthesis, processing and application of functional materials at the atomic and nanometer scale. Different stimuli ranging from heating or electrical biasing to mechanical deformation and various liquid and gas environments are used to model selected processes and follow the structural changes with the full range of advanced imaging techniques in the TEM to correlate structure and properties of materials and identify transient states in reactions. This lecture will (a) review the most important imaging techniques in the TEM (BF-/DF-/HRTEM, STEM), analytical techniques (EELS, EDX) and recent developments such as ACOM orientation mapping and other 4D-STEM techniques, (b) discuss electron beam effects in materials, (c) introduce various in-situ thermal, electrical, mechanical, liquid and gas phase setups, and (d) their application to understand processes in (nanostructured) materials. The aim is to provide the student with tools for advanced atomic and nanoscale characterization of materials and processes.

3 Learning outcomes

The students will be introduced to the possibilities modern electron microscopy imaging and spectroscopy techniques offer for advanced atomic/nanoscale structural and chemical characterization and the different in-situ approaches that can be implemented to follow complex processes in materials. The aim is to develop an idea how materials research can benefit from (in-situ) electron microscopy and to provide the students with a basis to interpret (in-situ) electron microscopy data and to recognize challenges and pitfalls, enabling independent critical analysis of his/her own experimental research and published structural characterization.

4 Requirements for participation

recommended: module “Transmission Electron Microscopy (TEM)”
recommended: module “Scanning Transmission Electron Microscopy for Materials Science”

5 Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
2. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, R. Egerton, Springer Verlag
4. G. Dehm, J.M. Howe, J. Zweck (Eds.): In-situ Electron Microscopy, Wiley-VCH

10 Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Interfaces: Wetting and Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>Credit points</td>
</tr>
<tr>
<td>11-01-2016</td>
<td>4 CP</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Robert Stark

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2016-vl</td>
<td>Interfaces: Wetting and Friction</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
Phenomena at the fluid-solid boundary play an important role in many technical applications such as lubrication, microfluidics, biotechnology or printing. The lecture focuses on the fundamental aspects. Topics include: Liquid surfaces, thermodynamics of interfaces, the electric double layer, surface forces, contact angle, wetting, surface modification, microfluidics, friction, lubrication and wear, cleaning.

3 Learning outcomes
The students are able to explain phenomena at the liquid solid interface in terms of physical and
chemical properties. They know how to select materials and how to modify their surfaces in order to achieve the desired wetting behavior in a technical environment.

4 **Requirements for participation**

Recommended: basic physical chemistry and physics

5 **Forms of examination**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**

Passing of exam

7 **Grading**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 **Usability of the module**

M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**

Cycle: each summer semester

Module Description

Modul name

Magnetism and Magnetic Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2001</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. rer. nat. Lambert Alff

1 **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2001-vl</td>
<td>Magnetism and Magnetic Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Study content**

- Basic notions of magnetism
- Magnetism in atoms and ions
- Magnetism in metallic materials
Learning outcomes
The student is able to remember the basic notions of magnetism for a broad range of situations and materials. The student has the competence to differentiate different types of magnetism and their origin, and to correlate them with materials properties. He/she is qualified to evaluate experimental and theoretical methods for goal-oriented research in the area of magnetism and magnetic materials. The student remembers modern magnetic materials and their use in current applications. The student has a first insight in modern research in magnetism and magnetic materials and a beginner’s competence to follow advanced textbooks and scientific literature.

Requirements for participation
recommended: module „Quantum Mechanics for Materials Science“

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature

Comment
Cycle: each winter semester
Module Description

Modul name

| Materials Chemistry |

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7292</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. Ralf Riedel

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7292-vl</td>
<td>Materials Chemistry</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content

- Introduction
- Silicon: Methods for the Preparation of High Purity Silicon
- Reaction in the Gas Phase: Mond-Process, van-Arkel-de-Boer Process, CVD (Thermodynamics of CVD Examples), Spray Pyrolysis
- Solvothermal Syntheses
- Silicones and Silazanes: Synthesis from Organochloro Silanes,
- Silicon-Containing Polymers: Polysiloxanes, Polysilazanes, Polysilylcarbodiimides, Polysilanes, Polycarboasilanes
- Boron-Containing Polymers
- Polymer-Derived Ceramics and Their Applications (Fibers, Ceramic Brake Disc)
- High Pressure Syntheses, Diamond Anvil Cell
- Sol-Gel Processing I (Alkoxides, Transalkoholyse, Base- und Acid-Induced Catalysis of Si(OR)4/H2O)
- Sol-Gel Processing II (Polycondensation, Cross-Condensation),
- Organic Light Emitting Diodes
- Biomineralisation

3 Learning outcomes

The student has gained an overview on and remembers different synthesis techniques for inorganic materials. Furthermore, he/she has gained the competence to evaluate the relationship between the synthesis method and the properties of the inorganic materials materials. The student has the competence to evaluate experimental and theoretical methods for goal-oriented research in the area of inorganic materials. The student has a first insight in modern preparative techniques for inorganic materials and a beginner’s competence to follow advanced textbooks and scientific literature.

4 Requirements for participation

none

5 Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, Fachprüfung, Standard)
6 Requirements on the award of credit points
 passing of exam

7 Grading
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module
 M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
 Cycle: each winter semester

Module Description

Modul name

Materials chemistry in electrocatalysis for energy applications

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2022</td>
<td>5 CP</td>
<td>150 h</td>
<td>150 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
 Englisch

Person responsible for the module
 Prof. Dr. rer. nat. Ulrike Kramm

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2022-ue</td>
<td>Exercises Materials chemistry in electrocatalysis for energy applications</td>
<td>0</td>
<td>Übung</td>
<td>0</td>
</tr>
<tr>
<td>11-01-2022-vl</td>
<td>Materials chemistry in electrocatalysis for energy applications</td>
<td>0</td>
<td>Vorlesung</td>
<td>0</td>
</tr>
</tbody>
</table>

Study content

Within the synthesis process of electrocatalysts it is important to consider the distinct application target already at an early stage. In this lecture, we will discuss the most important fabrication processes for electrocatalysts, important techniques for their characterization and electrochemical evaluation. The selected examples focus on energy applications such as fuel cells and water electrolysis.

Topics:
 Electrocatalysis (Introduction, Fundamentals, Reaction mechanisms)
 Catalyst synthesis (Preparation of nanoparticles, Thin films, New and innovative catalyst concepts)
Characterization (Selected spectroscopic and analytical methods, In-situ and post-mortem characterization)
Important Parameters for catalyst application (Activity, Selectivity, Stability)
Applications (Different types of fuel cells, water splitting reactions, and others)

3 Learning outcomes
Due to the parallel exercises in which important recent publications on catalyst synthesis, characterization and applications are evaluated, the students become experts in the field of materials development for electrocatalysis. They will be able to perform a qualified evaluation of related publications, proposals etc.. In addition to this, they learn how to present research results. For their own work, the students are able to decide on their own, which characterization techniques are most suited for the one or other types of catalyst as also the main aspects for each of the characterization methods will be discussed.

4 Requirements for participation
A Bachelor degree in natural science or engineering. It is recommended to study the basics of electrochemistry (moduls 11-01-7300 or 07-04-0006) in parallel or before.

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
To be announced in the lecture

10 Comment
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Materials Research with Energetic Ion Beams - Basic Aspects and Nanotechnology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-7042</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7042-vl</td>
<td>Materials research with energetic ion beams - basic aspects and nanotechnology</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Study content**

- ionizing radiation
- particle-solid interaction
- energy loss
- radiation damage
- damage analysis
- nanotechnology with ion beams
- accelerator technology

3 **Learning outcomes**

The course provides an overview of the unique possibilities using high-energy heavy ions for the modification of material properties and production of micro and nanostructures. The student becomes familiar with basic interaction processes of particle beams and solids. Knowledge is gained how ion radiation deteriorates materials and how this radiation damage is analysed by different methods. The lecture also gives insight into ion beam technology at large scale accelerator facilities and how to perform irradiation experiments by adjusting and controlling specific beam parameters. The student gets a glimpse on the present activities in the field of ion track technology using individual ion projectiles as structuring tool and will be familiar with ion-beam produced micro- and nanostructures and a broad spectrum of applications.

4 **Requirements for participation**

none

5 **Forms of examination**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**

passing of exam

7 **Grading**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 **Usability of the module**

M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

will be provided during the lecture
Module Description

Modul name

Materials Science of Thin Films

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2004</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Prof. Dr. rer. nat. Lambert Alff</td>
</tr>
</tbody>
</table>

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2004-vl</td>
<td>Thin Film Fabrication and Surface Techniques</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content

- Introduction to thin film technology
- Nucleation: Thermodynamics and kinetics
- Structure and strain
- Thermal Evaporation
- Sputtering
- Chemical vapor deposition (CVD)
- Molecular beam epitaxy (MBE)
- Pulsed laser deposition (PLD)
- Thin film deposition of oxides
- Thin films for solar cells

3 Learning outcomes

The student has gained a broad overview on and remembers relevant thin film deposition methods. He/she is able to identify the advantages and disadvantages of each deposition method for different applications and needs. The student has the competence to apply fundamental thin film science to novel materials. The student has the competence to differentiate different types of deposition methods according to their physical and chemical principles. He/she is qualified to evaluate thin film methods for goal-oriented research in the diverse fields of thin film applications. The student has a first insight in modern research in thin films and a beginner's competence to follow advanced textbooks and scientific literature.

4 Requirements for participation

none

5 Forms of examination

Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
• Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Module name</th>
<th>Mathematical Methods in Materials Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul name</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Module no.</td>
<td>Credit points</td>
</tr>
<tr>
<td>11-01-3018</td>
<td>4 CP</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Courses of the module</td>
<td></td>
</tr>
<tr>
<td>Course no.</td>
<td>Course name</td>
</tr>
<tr>
<td>11-01-8662-vl</td>
<td>Mathematical Methods in Materials Science</td>
</tr>
<tr>
<td>Study content</td>
<td></td>
</tr>
<tr>
<td>• Linear ordinary differential equations: constant and variable coefficients</td>
<td></td>
</tr>
<tr>
<td>• Relaxation processes and oscillations in electrical circuits, parametric resonance</td>
<td></td>
</tr>
<tr>
<td>• Normal vibrational modes of polyatomic molecules: Lagrangian mechanics</td>
<td></td>
</tr>
<tr>
<td>• Linear partial differential equations: elliptic, hyperbolic, and parabolic equations</td>
<td></td>
</tr>
<tr>
<td>• Method of Fourier and Laplace transforms</td>
<td></td>
</tr>
<tr>
<td>• Diffusion in composite media: interface resistance</td>
<td></td>
</tr>
<tr>
<td>• Diffusion of foreign atoms to cylindrical and spherical precipitates</td>
<td></td>
</tr>
<tr>
<td>• Diffusion of magnetic field in a metal</td>
<td></td>
</tr>
<tr>
<td>• Solidification processes in an undercooled melt: Stefan problem</td>
<td></td>
</tr>
<tr>
<td>• Injection of electrons into dielectrics and organic semiconductors</td>
<td></td>
</tr>
<tr>
<td>• Green’s function technique</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcomes
The student is able to use advanced mathematical techniques for exactly, or approximately, solving linear ordinary and partial differential equations. He/she is able to implement these techniques for dealing with a variety of typical problems in materials science. He/she is able to follow sophisticated texts on these techniques and to address complex issues of that sort him- or herself.

Requirements for participation
recommended: basic knowledge in mathematics, physics, and materials science

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature

Comment
Cycle: each winter semester

Module Description

Modul name
Mechanical Properties of Ceramic Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9332</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>
1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9332-vl</td>
<td>Mechanical Properties of Ceramic Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Overview of technical ceramics in relation to their mechanical properties
- Stress intensity factor, mechanical energy release rate, instability criterion
- Fracture strength, fractography
- Crack tip toughness, crack shielding, theory of R-curves
- Process zone mechanisms: phase transformation, microcracking, ferroelasticity
- Fiber reinforcement, micromechanics of whiskers and particle toughening
- Mechanics of laminates
- Subcritical crack growth and fatigue, life time predictions
- Creep, sintering
- Thermal shock, hardness and wear
- Measurement methodology, Weibull’s law

3 Learning outcomes
The student has obtained a global and detailed view of the different mechanical properties of ceramic materials, composites and structures. This knowledge allows him/her to choose materials with adequate properties for a given application. The student understands the phenomenon responsible for crack extension and brittle fracture under the combined effects of applied loading, temperature, time, chemical environment. He/she can choose appropriate measurement techniques to get reliable data. The student understands the influence of microstructure on the mechanical properties of ceramic materials. He/she has the competence to devise mechanisms of optimizing existing ceramic materials and to develop new materials with improved properties. The student has a first insight into modern research in the field of mechanics of ceramics and is competent to follow advanced textbooks and scientific literature.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
Module Description

Modul name

Mechanical Properties of Metals

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
<th>Language of instruction</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2006</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
<td>Englisch</td>
<td>Apl. Prof. Dr.-Ing. Clemens Müller</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9092-vl</td>
<td>Mechanical Properties of Metals</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Microstructure – Property Relationship
- Tensile Testing
- Fracture Toughness
- Fatigue Life Time
- Fatigue Crack Propagation
- Crack Closure Effects
- Long Crack and Short Crack Behaviour

Learning outcomes

The student is able to remember the basic notions of the behaviour of metallic materials under static and dynamic loading. He/she has the competence to differentiate the relevant mechanisms and their microstructural dependence. They are able to decide about the optimal microstructure for the prevailing mechanical loading and have basic knowledge about methods to produce the relevant microstructures. He/she is qualified to assess experimental and theoretical methods for goal-oriented research in the area of improving mechanical properties by microstructural optimization. The student has a beginner’s competence to follow advanced textbooks and scientific literature.

Requirements for participation

recommended: Bachelor module ”Materials Science IV: Mechanical Properties”
5 **Forms of examination**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 **Grading**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 **Usability of the module**
M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**
2. Materials Science and Engineering, R. W. Cahn et al. VCH-Verlag
5. Werkstoffkunde und Werkstoffprüfung, W. Domke. Verlag W. Girardet, Essen

10 **Comment**
Cycle: each winter semester

Module Description

Modul name

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7070</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr.-Ing. Karsten Durst

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7070-vl</td>
<td>Micromechanics and Nanostructured Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
The lecture treats new micromechanical testing methods and size effects in the mechanical properties of metals and nanostructured/nanosized materials. The first part of the lectures is concerned with small scale testing methods starting with nanoindentation testing and contact mechanics for evaluation of the local mechanical properties. This is followed by an overview of new in-situ testing methods, where mechanical testing on small scale samples is conducted inside the electron microscope and deformation mechanism can be analyzed during mechanical testing. Finally,
techniques for thin film testing, like Bulge test or tensile testing of coated substrates is presented and the failure and damage mechanism are discussed. The second part of lecture series focuses on size effects in the mechanical properties, starting with small scale samples like pillars and thin films as well as size effects occurring during indentation testing. At the end, deformation mechanisms and size effects found in bulk nanostructured materials are discussed, focusing on strain rate sensitivity and deformation mechanism occurring at grain boundaries. The lecture is intended for master students having a background in deformation mechanism and mechanical properties of metallic materials.

3 Learning outcomes

The student develops a basic understanding of the different testing methods and deformation mechanism for small scale mechanical properties. The student can discuss in detail the governing equations for Nanoindentation, bulge testing as well as standard uniaxial testing approaches. Based on the knowledge of the deformation behavior at the macroscopic length scale, the student can describe the deformation resistance of materials at small length scales and for small scale microstructures using concepts like theoretical strength or Hall Petch break down. Finally the students gain a first insight into small scale mechanical testing methods as well as the deformation mechanism in nanocrystalline materials to follow advanced textbooks and scientific literature.

4 Requirements for participation

none

5 Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Dauer 15 min, Standard)

6 Requirements on the award of credit points

passing of exam

7 Grading

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module

M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

1. A.C. Fischer Cripps: Nanoindentation, Springer
2. J. Rösler: Mechanisches Verhalten der Werkstoffe, Springer
3. A.C. Fischer Cripps: Introduction to contact mechanics, Springer
5. K.L. Johnson: Contact mechanics, Cambridge University Press
6. DIN EN ISO 14577: Instrumentierte Eindringprüfung

10 Comment

Cycle: each summer semester
Module Description

Modul name

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Modern Steels for Automotive Applications</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9090</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Apl. Prof. Dr.-Ing. Clemens Müller

<table>
<thead>
<tr>
<th>Courses of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course no.</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>11-01-9090-vl</td>
</tr>
</tbody>
</table>

Study content

- Production of steels
- Thermomechanical treatments (TMT), microstructures, deformation and strengthening modes
- Requirements for automotive applications
- Modern high strength steels, TMT, microstructures, deformation and strengthening modes
- High formability steels, TMT, microstructures, deformation and strengthening modes

Learning outcomes

The student has gained an advanced knowledge of the processing (TMT) of modern steels, their microstructures, their deformation and strengthening modes as well as their mechanical properties. He/she is able to correlate the mechanical properties with microstructural features and has an advanced knowledge of the methods to produce the required microstructure. The student has a first insight in the special requirements on steels/materials for automotive applications and a beginner’s competence to follow advanced textbooks and scientific literature.

Requirements for participation

none

Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points

passing of exam

Grading

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)
Module Description

Modul name

Phase Transitions in Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9812</td>
<td>4 CP</td>
<td>120 h</td>
<td>120 h</td>
<td>1 semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Prof. Dr. rer. nat. Wolfgang Donner

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9812-vl</td>
<td>Phase Transitions in Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>0</td>
</tr>
</tbody>
</table>

Study content

- Basic Thermodynamics
- Nucleation and Diffusion
- Energy and Entropy
- Melting
- Precipitation
- Diffusionless Transformations
- Ordering Transformations
- Magnetic Transitions
- Critical Phenomena

Learning outcomes

Phase transitions are ubiquitous in Materials Science; close to such a transition, the response functions (i.e. physical properties) are enhanced. After taking this course, the student will be able to:

1. Classify phase transitions,
2. Relate the changes inside the materials to changes in their physical properties,
3. Choose appropriate characterization methods for phase transitions,
4. Critically review the literature about phase transitions,
5. Use the knowledge about phase transitions for his/her own scientific project.
Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Polymer Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-3031</td>
</tr>
<tr>
<td>Credit points</td>
<td>6 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>135 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr.-Ing. Jürgen Wieser</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-3031-vl</td>
<td>Polymer Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>3</td>
</tr>
</tbody>
</table>

Study content

Molecular structures and morphologies in polymers; Basics of polymer synthesis; mechanisms of additives, fillers and fibres in polymer compounds; viscoelasticity; creep and relaxation; rheology of polymer melts, glass transition and crystallisation of polymers; mechanical, thermal,
3 Learning outcomes
The student has gained an overview on typical morphologies in polymers and is able to discuss structure-property relationships and also the influence of kinetic parameters on the morphology. He/she can explain the role and the mechanisms of the most important classes of additives, fillers and fibres in polymer compounds. He/she can identify the appropriate characterization methods, testing devices and testing procedures for typical applications.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Polymer Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-3030</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person responsible for the module</td>
<td>Prof. Dr.-Ing. Jürgen Wieser</td>
</tr>
</tbody>
</table>

| Courses of the module | 1 |

optical and electrical properties of polymer compounds; longterm behavior of polymers; characterization methods and procedures for polymers.
<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-3030-vl</td>
<td>Polymer Processing</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Study content**
Processing of Polymers: Compounding, extrusion, injection moulding, thermoforming, blow moulding, welding, glueing and typical surface decorations and treatments

3 **Learning outcomes**
The student has gained an overview on typical processing technologies for polymers. He/she is able to identify processing technologies for different applications. He/she can explain the plastification, the melt flow and the solidification characteristics of a thermoplastic resin and how the materials morphology develops during processing. He/she can identify typical failures which can result of inappropriate processing. The student is able to describe the most important machines and process steps.

4 **Requirements for participation**
none

5 **Forms of examination**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
passing of exam

7 **Grading**
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 **Usability of the module**
M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**
Cycle: each summer semester

Module Description

Modul name

Porous Ceramics for Energy-Related Applications
Module no.
11-01-2023
Credit points
4 CP
Workload
120 h
Self-study
120 h
Duration
1 Semester
Frequency
Every 2. semester
Language of instruction
Englisch
Person responsible for the module
Dr. Magdalena Joanna Graczyk-Zajac

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2023-vl</td>
<td>Porous Ceramics for Energy-Related Applications</td>
<td>0</td>
<td>Vorlesung</td>
<td>0</td>
</tr>
</tbody>
</table>

2 Study content

- Synthesis of porous ceramics: focus on the application-related porosity tailoring and functionalization.
- Properties of porous ceramics: focus on the thermal/hydrothermal/chemical stability of the porosity.
- Applications of porous ceramics: past, state-of-the art and future technologies.
- Porous materials in batteries
- Porous materials in fuel cells and supercapacitors.
- Porous materials for gas storage
- Porous membranes for gas separation

3 Learning outcomes

Immense research has been carried out on the synthesis and application of hierarchically organized porous solids over the last decade. This subject has become a hot topic and it will continue to prosper due to the variety of important, energy related applications such as charge and gas storage media and membrane supports.

This course aims at instructing students in a systematic, interdisciplinary and practice-oriented way about the application of porous ceramics in energy-related technologies. It bridges the gap between the different "ways of thinking" in material science, chemistry and electrochemistry. It provides a firm grounding for advanced students who will gain a broad general overview on porous materials and a detailed knowledge on the processing and applications of this materials group.

4 Requirements for participation

none

5 Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points

passing of exam

7 Grading

Modulabschlussprüfung:
8 **Usability of the module**
M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**
Cycle: each winter semester

Module Description

Modul name
Properties of Ferroelectric Materials

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8411</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Dr. Jurij Koruza

1 **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8411-vl</td>
<td>Properties of Ferroelectric Materials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Study content**

- Polarization mechanisms in gases, liquids and solids
- Symmetry-property relations in polar materials: piezo-, pyro- & ferroelectricity
- Landau theory of phase transitions
- Domain structure of uni- and polyaxial ferroelectrics
- Coupling of ferroelectric & ferroelastic behavior
- Domain reversal & ferroelectric hysteresis
- Domain walls, small-signal behavior, Rayleigh law
- Damage mechanisms, aging & fatigue
- Technically relevant ferroelectrics
- Special cases: Antiferroelectrics, relaxors, multiferroics...
- Typical applications of ferroelectric materials

3 Learning outcomes
The student can identify different mechanisms of electrical polarization and is able to deduce possible polarization effects from information about the structure of a material. He/she can choose basic characterization techniques and adapt them to the requirements of a given problem. The student understands the influence of domain structures on the properties of a ferroelectric/ferroelastic and knows how to manipulate these structures to obtain optimum material response for a specific application. He/she has the competence to devise methods of optimizing existing ferroelectric materials and to develop new materials with improved properties. The student has a first insight in modern research in ferroelectrics and is competent to follow advanced textbooks and scientific literature.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
Cycle: each summer semester
Module Description

Modul name
Quantum Materials: Theory, Numerics, and Applications

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2019</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction: Englisch
Person responsible for the module: Prof. Dr. rer. nat. Hongbin Zhang

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2019-vl</td>
<td>Quantum Materials: Theory, Numerics, and Applications</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
In this course, we will focus on several classes of Solid State Materials where Quantum Mechanics can be applied to get the physical properties, including but not limited to

* Wannier functions and tight-binding model
* metals, insulators, and metal-insulator transition
* ferroelectric polarization, i.e., Berry phase theory
* graphene
* topological insulators
* magnetism, (super) exchange interaction
* transport, e.g., diffusive, mesoscopic
* linear-response theory
* surface and interface
* phonons
* mean-field theory and strong correlations

All the topics in this course will be discussed by solving simple models numerically, with Python modules prepared for/developed during the courses. Hands-on tutorials will be arranged with access to clusters where calculations can be done.

3 Learning outcomes
The students develop a fundamental understanding on the quantum origin of various physical properties, in close connection to their future researches. They obtain a deep understanding of the theory behind each class of phenomena.

4 Requirements for participation
recommended: basic quantum mechanics and basic knowledge of programming

5 Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
A handout will be distributed for each lecture, with detailed theory, guide for numerical implementation, and further literature.

10 Comment
Cycle: each summer semester

Module Description

Modul name
Scanning probe microscopy in materials science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7060</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Robert Stark

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-7060-vl</td>
<td>Scanning probe microscopy in materials science</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
- Introduction into nanoscience and nanotechnology
- Scanning force microscopy
- Scanning tunneling microscopy
- Scanning nearfield microscopy

3 Learning outcomes
The student is familiar with the basic concepts of nano- and microfabrication techniques. He/she has gained insights into contact mechanics and surface forces and is able to apply the appropriate model to a nanomechanical experiment. The students have achieved an extensive overview on established surface characterization techniques based on scanning probe microscopy including the physical principle, instrumentation, modes of operation and can explain underlying physical principles. The students can explain the interplay between manufacturing and evaluation/characterization in nanoscience. The students can analyze and explain physical phenomena at solid liquid interfaces. The students know how to select the adequate methods and to
apply an appropriate but yet simple model to study nanophysical properties of soft and hard matter.

4 **Requirements for participation**
 none

5 **Forms of examination**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**
 passing of exam

7 **Grading**
 Modulabschlussprüfung:
 - Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 **Usability of the module**
 M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**
 Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Module name</th>
<th>Scanning Transmission Electron Microscopy for Materials Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-9062</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>120 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Englisch</th>
</tr>
</thead>
</table>

| Person responsible for the module | Dr. rer. nat. Leopoldo Molina-Luna |

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-9062-vl</td>
<td>Scanning Transmission Electron Microscopy for Materials Science</td>
<td>0</td>
<td>Vorlesung</td>
<td>0</td>
</tr>
</tbody>
</table>

2 **Study content**
Learning outcomes

Requirements for participation

Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Standard)

Requirements on the award of credit points

Grading

Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, fakultativ, Gewichtung: 100%)

Usability of the module

Literature

Comment

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Semiconductor Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul no.</td>
<td>11-01-8162</td>
</tr>
<tr>
<td>Credit points</td>
<td>4 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>90 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>Englisch</td>
</tr>
<tr>
<td>Person responsible for the module</td>
<td>Apl. Prof. Dr. rer. nat. Andreas Klein</td>
</tr>
</tbody>
</table>

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8162-vl</td>
<td>Semiconductor Interfaces</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Carrier concentrations in semiconductors
- Excess carriers and carrier recombination
- Space charge layers
- Schottky diodes and p/n-junctions
- Charge transport characteristics of semiconductor diodes
- Solar cells, light emitting diodes, semiconductor lasers
- Barrier formation at semiconductor interfaces

3 **Learning outcomes**

The student is able to remember the basic notions of semiconductor physics including carrier concentrations in thermal equilibrium and non-equilibrium situations. The student has the competence to develop energy band diagrams and understand the function of all basic semiconductor structures. He/she is qualified to evaluate semiconductor devices and remembers most important semiconductor materials, their properties and their use in current applications. The student is aware of several materials limitations of semiconductor devices.

4 **Requirements for participation**

recommended: fundamentals of solid state physics

5 **Forms of examination**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 **Requirements on the award of credit points**

passing of exam

7 **Grading**

Modulabschlussprüfung:

- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

8 **Usability of the module**

M.Sc. Materials Science: Elective Courses Materials Science

9 **Literature**

10 **Comment**

Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Seminar Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul no.</td>
<td>11-01-8211</td>
</tr>
<tr>
<td>Credit points</td>
<td>3 CP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Self-study</td>
<td>60 h</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>
Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-8211-se</td>
<td>Seminar Metals</td>
<td>0</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

Topics are given to elaborate on in a seminar talk. These topics are related to actual research in the field of metal alloys and their application.

The seminar is designed to help to bridge the gap between the scientific education (textbooks) and scientific research (published papers).

In the discussion section, students have to defend their seminar and should actively contribute to the discussion of other seminars.

Learning outcomes

The student gains the ability to approach a scientific topic by accumulating information from textbooks and scientific literature.

Ability to sort the information and present it to other students at a similar level of knowledge in a useful way.

Learning to ask useful and the right questions to scientific talks. Drive to participate in discussion and drawing lines between different talks.

Requirements for participation

none

Forms of examination

Modulabschlussprüfung:

- Modulprüfung (Studienleistung, Referat, Standard)

Requirements on the award of credit points

active participation in the seminar; successful seminar talk

Grading

Modulabschlussprüfung:

- Modulprüfung (Studienleistung, Referat, Gewichtung: 1)

Usability of the module

M.Sc. Materials Science: Elective Courses Materials Science

Literature

current research articles and advanced topics according to individual topics

Comment

Cycle: each summer semester
Module Description

Modul name

Seminar Research Topics in Materials Science

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4055</td>
<td>2 CP</td>
<td>60 h</td>
<td>30 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction

Englisch

Person responsible for the module

Dr. rer. nat. Thomas Mayer

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-4005-se</td>
<td>Seminar Research Topics in Materials Science</td>
<td>0</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content

- Topics are given to elaborate on in a seminar talk. These topics are related to actual research areas in materials science. Each set of topics is coherent within a certain field of materials science. The seminar is designed to help bridge the gap between the scientific education and textbooks and scientific research and published papers.
- In the discussion section, students have to defend their seminar and should actively contribute to the discussion of other seminars. In the discussion, the link between the talks should be reflected.

Learning outcomes

The student gains the ability to approach a scientific topic by accumulating information from textbooks and scientific literature. Ability to sort the information and present it to other students at a similar level of knowledge in a useful way. Learning to ask useful and the right questions to scientific talks. Drive to participate in discussion and drawing lines between different talks.

Requirements for participation

none

Forms of examination

Modulabschlussprüfung:
- Modulprüfung (Studienleistung, Referat, Standard)

Requirements on the award of credit points

active participation in the seminar; successful seminar talk

Grading

Modulabschlussprüfung:
- Modulprüfung (Studienleistung, Referat, Gewichtung: 1)

Usability of the module

M.Sc. Materials Science: Elective Courses Materials Science
Module Description

Modul name
Spintronics

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2002</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Lambert Alff

Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2002-vl</td>
<td>Spintronics</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content
- Introduction and basic notions of spintronics
- Spin dependent transport
- Magneto resistive (MR) effects, anisotropic magneto resistance (AMR)
- Giant magneto resistance (GMR)
- Spin dependent tunneling and tunneling magneto resistance (TMR)
- Materials for Spintronics, colossal magneto resistance (CMR)
- Spin transport in semiconductors
- Spintronic devices
- Meso and nanomagnetism
- Magnetic storage
- Selected (hot) topics from current research

Learning outcomes
The student is able to adapt the concepts of spintronics to a broad range of situations and materials. The student has the competence to differentiate different types of magneto-resistive effects and their origin, and to correlate them with materials properties. He/she is qualified to evaluate experimental and theoretical methods for goal-oriented research in the area of spintronics. The student remembers modern spintronic materials and their use in current applications. The student has a first insight into modern research in spintronics and its device applications. He/she has a beginner's competence to follow advanced textbooks and scientific literature.

Requirements for participation
none

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, Fachprüfung, Gewichtung: 1)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature
5. L. Alff, Spintronics, Lecture Material (latest version 2010)

10 Comment
Cycle: each summer semester

Module Description

Modul name
Technology of Nanoobjects

<table>
<thead>
<tr>
<th>Module no.</th>
<th>Credit points</th>
<th>Workload</th>
<th>Self-study</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2021</td>
<td>4 CP</td>
<td>120 h</td>
<td>90 h</td>
<td>1 Semester</td>
<td>Every 2. semester</td>
</tr>
</tbody>
</table>

Language of instruction
Englisch

Person responsible for the module
Prof. Dr. rer. nat. Wolfgang Ensinger

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2021-vl</td>
<td>Technology of Nanoobjects</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Study content
Definitions of nanoobjects/-materials, Quantum mechanics basics, Classifications of nanoobjects, 1D nanostructures, Characterisation methods, Bioinspired materials, Catalysis with nanostructures, Nanomagnetism, Sensing technology

3 Learning outcomes
The student has gained an overview of classification of nanoobjects according to their dimensionality, with the emphasis on fabrication, characterization and application of one-dimensional nanoobjects, such as nanowires, -tubes, and networks thereof.
The student obtained the competence to follow advanced literature in the field of nanotechnology based on one-dimensional nanoobjects.

4 Requirements for participation
none

5 Forms of examination
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

6 Requirements on the award of credit points
passing of exam

7 Grading
Modulabschlussprüfung:
 • Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)

8 Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

9 Literature

10 Comment
Cycle: each summer semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Thermodynamics and Kinetics of Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>11-01-3577</td>
</tr>
<tr>
<td>Language of instruction</td>
<td></td>
</tr>
</tbody>
</table>
Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-3577-vl</td>
<td>Thermodynamics and Kinetics of Defects</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

Study content
- Basic thermodynamics of solids
- Thermodynamics of point defects
- Defect reactions and concentrations
- Kröger-Vink notation and Brouwer approximation
- Boundary layers: Mott-Schottky and Guy-Chapman profiles
- Diffusion processes
- Chemical, electrical- and electrochemical potential gradients
- Ambipolar diffusion and oxidation of metals

Learning outcomes
The student is able to remember the relevance of point defects for the electronic properties of materials. He/she has the competence to identify conditions under which point defects define material properties and to develop strategies how these can be modified. The student has a basic qualification to make materials selections for electronic and ionic applications.

Requirements for participation
none

Forms of examination
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)

Requirements on the award of credit points
passing of exam

Grading
Modulabschlussprüfung:
- Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 1)

Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

Literature

Comment
Cycle: each summer semester
Module Description

Modul name

Transmission Electron Microscopy (TEM)

Module no. 11-02-6330
Credit points 3 CP
Workload 90 h
Self-study 45 h
Duration 1 Semester
Frequency Every 2. semester

Language of instruction Deutsch und Englisch

Person responsible for the module Prof. Dr. rer. nat. Hans-Joachim Kleebe

1 Courses of the module

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-02-2212-vu</td>
<td>Transmission Electron Microscopy (TEM)</td>
<td>0</td>
<td>Vorlesung und Übung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Study content

- Conventional Transmission Electron Microscopy (TEM)
- Specimen Preparation
- Elements of the TEM (e.g., Lenses, Lens Aberrations)
- Electron Diffraction
- Bright Field and Dark Field Imaging Techniques
- Defects in Solids
- High-Resolution TEM
- Novel Developments in TEM (e.g., Cs- and Cc-Correctors)

3 Learning outcomes

The student will be introduced to the operation of a modern transmission electron microscope (TEM), he/she will be familiar with the basic physical principals of TEM, he/she will be able to judge where this technique can be utilized and which limitations come with it, he/she will be introduced to a number of practical applications of TEM in material science and will be competent to evaluate experimental results obtained with this technique, the student will have obtained first insights in modern transmission electron microscopy and will be able to independently apply this knowledge for the continuation of her/his own experimental research in this area.

4 Requirements for participation

recommended: module "Introduction to Scanning Electron Microscopy"

5 Forms of examination

Bausteinbegleitende Prüfung:

- [11-02-2212-vu] (Fachprüfung, Fachprüfung, Standard)

6 Requirements on the award of credit points

passing of exam

7 Grading

Bausteinbegleitende Prüfung:
Usability of the module
M.Sc. Materials Science: Elective Courses Materials Science

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

Comment
Cycle: each winter semester

Module Description

<table>
<thead>
<tr>
<th>Modul name</th>
<th>Tunable properties in nanomaterials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module no.</td>
<td>Credit points</td>
</tr>
<tr>
<td>11-01-2018</td>
<td>4 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>Person responsible for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Dr. Ben Breitung</td>
</tr>
</tbody>
</table>

1. **Courses of the module**

<table>
<thead>
<tr>
<th>Course no.</th>
<th>Course name</th>
<th>Workload (CP)</th>
<th>Form of instruction</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-2018-vl</td>
<td>Tunable properties in nanomaterials</td>
<td>0</td>
<td>Vorlesung</td>
<td>2</td>
</tr>
</tbody>
</table>

2. **Study content**

The conventional control of material properties is achieved by compositional (e.g. alloying) or microstructural modifications, such as variation of grain size, introduction of point (e.g. vacancies, dopant atoms), line (dislocations, twins) or planar (stacking faults) defects etc. This establishes microstructure-property relationships.
Going beyond these well-known concepts, the present course will introduce the idea and physics behind the reversible control of material properties, especially in surface-dominated nanomaterials. Among others, the electric potential as the control parameter will be discussed in greater detail; specifically, dielectric, ferroelectric and electrolytic gating concepts will be covered. At the next level, the course will introduce the notion that even surface and bulk chemistry can control material properties in a reversible manner. As selected case studies reversible modification of mechanical, magnetic and electrical properties in nanostructures of metals and semiconductors will be presented. At the end, the relationship of this property tuning with certain application areas will be addressed.

The lectures will be divided into the following topics:

Motivation
Physics of various gating principles
Nanomaterial synthesis and the optimization of their morphology
Field-effect controlled physical properties
Chemistry controlled physical properties

<table>
<thead>
<tr>
<th>3</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Requirements for participation</td>
</tr>
<tr>
<td>5</td>
<td>Forms of examination</td>
</tr>
<tr>
<td>Modulabschlussprüfung:</td>
<td></td>
</tr>
<tr>
<td>• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Standard)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Requirements on the award of credit points</td>
</tr>
<tr>
<td>passing of exam</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Grading</td>
</tr>
<tr>
<td>Modulabschlussprüfung:</td>
<td></td>
</tr>
<tr>
<td>• Modulprüfung (Fachprüfung, mündliche / schriftliche Prüfung, Gewichtung: 100%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Usability of the module</td>
</tr>
<tr>
<td>M.Sc. Materials Science: Elective Courses Materials Science</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Literature</td>
</tr>
<tr>
<td>10</td>
<td>Comment</td>
</tr>
<tr>
<td>Cycle: each summer semester</td>
<td></td>
</tr>
</tbody>
</table>