FB 11 Materialwissenschaft
FG Funktionale Materialien
Prof. Dr. Oliver Gutfleisch
oliver.gutfleisch@tu-darmstadt.de
Peter-Grünberg-Str. 16
64287 Darmstadt
www.mawi.tu-darmstadt.de/fm

50 um

Sm_{9.6}Fe_{82.2}V_{8.2}

●3:29 ■1:12 #Fe

Fig. 1. Typical microstructure, MT

curve and XRD pattern for the sample

Advanced Research Lab / Master Thesis

Utilize the full rare-earth basket to produce gap magnet

The permanent magnet market is dominated by ferrite magnets (31% of the market, (BH)_{max}=35 kJ/m³) for low-performance and sintered Nd-Fe-B magnets (59%, (BH)_{max}=474 kJ/m³) for high-performance

applications. Only bonded Nd-Fe-B magnets are available for medium-performance applications, limited to room temperature applications, and representing 5% of the market share. Moreover, no sintered magnets are available for the medium-performance range that covers a wide operating temperature range. To address this, in this project we will develop a "gap magnet" with good thermal stability to fill the gap between ferrite and Nd-Fe-B, targeting intermediate energy application $(100 \le (BH)_{max} \le 200 \text{ kJ/m}^3)$).

A Project Highlights

Goal: Develop a resource-efficient gap magnet free from highly scarce heavy rare earths, while ensuring full utilization of the rare-earth element basket.

Focus Material: $Sm_3Fe_{29-x}M_x$ (M = V) compounds

Key Tasks You'll Tackle:

- Prepare and characterize single-phase Sm₃Fe_{26.7}V_{2.3} ingot
- Measure intrinsic magnetic properties (M_s, H_a, T_c) and analyze microstructure.
- Perform composition design to synthesize variants such with 3:29 phase.
 as Sm₃Fe₂₇V₂, Sm₃Fe_{27.3}V_{1.7}, Sm₃Fe_{27.4}V_{1.4} exploring
 phase stability. If the single phase won't obtain in V-lean region Sm will be substitute with Zr and Y. Selected sample will be subjected to grain size refinement.

Why Join

- Hands-on experience with advanced magnetic materials and state-of-the-art characterization.
 - ➤ Sample preparation → arc melting, induction melting
 - ➤ Structural analysis → X-ray powder diffraction
 - ➤ Microstructure analysis → Scanning electron microscopy (SEM)
 - ➤ Magnetic characterization → PPMS magnetometer
- Opportunity to publish results and build a strong research portfolio. Collaborate with different research group in the frame of CRC Hommage (more details: https://www.tu-darmstadt.de/sfb270/about_crc/index.en.jsp)
- Work in a dynamic, international materials science environment.

Supervisor: Dr. Pelin Tozman, Co-supervisor: Msc. Aaron Dextre

Contact: pelin.tozman@tu-darmstadt.de and Dr. Sagar Ghorai sagar.ghorai@tu-darmstadt.de