Picture: M. Graczyk-Zajac

Dr. Magdalena Joanna Graczyk-Zajac

Contact

Work external

  • Processing & characterization of polymer derived ceramics for energy storage application.
  • Development of various post-lithium battery technologies.
  • Advanced recycling routes of Li-ion batteries.
  • Synthesis and evaluation of porous materials for for batteries, gas capture and storage.
  • Hybrid energy storage solutions for renewable power plants, Stationary storage based on sustainable and non-critical recourses.
  • Recovery of lithium form geothermal brines.
  • September 2023 – Guest Professorship: Material Science TU Darmstadt, Germany
  • May 2020 – Project leader: R&D Technology Innovation, EnBW AG Karlsruhe, Germany
  • 2012 – 2020 Junior group leader TU Darmstadt, Germany
  • 2008 – 2012 Postoctoral Researcher TU Darmstadt, Germany
  • 2007 – 2008 Research engineer LITEN, Atomic French Commission (CEA), Grenoble, France
  • 2007 PhD in Physical Chemistry, Institute of Molecular Chemistry, University of Burgundy, Dijon, France: Synthesis and properties of Ti/Ta/Zr-modified polypyrrole-based conducting polymers.
  • 2002 Diploma-Engineer Faculty of Chemistry, Gdansk University of Technology, Poland
  • 2023 Invited Talk “International Conference on Sodium Batteries” ICNaB 2023 Liyang, China, Hybrid, grid connected 2 MWh stationary storage containing lithium- and sodium-based electrochemical components.
  • 2023 Invited talk “Energy Conversion and Storage Days” in Karlsruhe
  • 2022 Invited Talk “International Conference on Sodium Batteries” ICNaB 2022 Ulm
  • 2021 Invited Talk CIC energiGUNE “International workshop on Sodium-Ion Battery”
  • 2021 Invited Talk POLIS on 1st Virtual International Workshop on Post-Li Research: Women in Focus
  • 2021 Invited Talk POLIS on 1st Virtual International Workshop on Post-Li Research: Women in Focus
  • 2021 Invited Talk on EERA Joint Programme on Energy Storage “Materials for Hybrid Energy Storage – Creating an Ecosystem for Innovation “14.04.2021, virtual
  • 2018 Invited Talk at Gordon Research Conference ”Challenges and opportunities of the highly porous silicon embedded in the carbon/ceramic matrix” 25.02-2.03.2018, LA, USA
  • 2016 Invited talk at Tongji-TUD workshop on Functional Dielectrics, “Synthesis and Stabilization of Amorphous/Crystalline 3D Nano Silicon”, Darmstadt, Germany
  • 2016 Keynote lecture at MSE 2016, “Understanding of reversible and irreversible lithium storage within SiOC and SiCN ceramics”, Darmstadt, Germany
  • 2016 Invited talk at Workshop on Novel Materials for Energy Applications, “From pottery to battery: new ceramic energy storage materials“, Darmstadt, Germany

1. Graczyk-Zajac, M.; Herrmann, L.; Kaymakci, E.; Kölbel, T.; Verfahren zur Rück-Gewinnung von Lithium beim Recycling von Lithium-Ionen-Akkumulatoren, E102021117319A1

2. Kaymakci, E.; Graczyk-Zajac, M.; Herrmann, L.; Kölbel, T.; Verfahren zur Gewinnung von Lithium aus Sole oder Meerwasser, DE102021105808A1

3. Herrmann, L.; Kaymakci, E.; Kölbel, T.; Graczyk-Zajac, M.; Verfahren zur Herstellung eines Lithium-Adsorbens, DE102021108442A1

4. Kölbel, T.; Graczyk-Zajac, M.; Herrmann, L.; Kaymakci, E.; erfahren zum Freimachen einer durch ein Adsorbens zugesetzten Tiefbohrung; DE102021114229A1

5. Vrankovic, D.; Storch, M.; Schitco, C.; Graczyk-Zajac, M.; Riedel, R., Method for producing porous ceramics and a porous ceramic product, Patent application Nr. DE102016116732A1 (March 3rd, 2018)

6. Graczyk, M.; Alias, M.; Mailley, S.; Martinet, S., Process for Fabricating a Silicon-Based Electrode, Silicon-Based Electrode and Lithium Battery Comprising Such an Electrode, 2011,WO2009112714A2

1. Zambotti, A., Qu, F., Costa, G., Graczyk-Zajac, M. and Sorarù, G.D., Polymer-Derived Ceramic Aerogels to Immobilize Sulfur for Li-S Batteries. Energy Technol. 2300488 (2023). https://doi.org/10.1002/ente.202300488

2. Kempf, A.; Kiefer, S.; Graczyk-Zajac, M.; Ionescu, E.; Riedel, R., Tin-functionalized silicon oxycarbide as a stable, high-capacity anode material for Na-ion batteries, Open Ceramics, 15 (2023) 100388.

3. Melzi d'Eril, M.; Zambotti, A.; Graczyk-Zajac, M., Soraru, G-D.; Riedel, R., Effect of ultra-fast pyrolysis on polymer-derived SiOC aerogels and their application as anodes for Na-ion batteries, Open Ceramics, 14 (2023) 100354.

4. Melzi d'Eril, M.,Graczyk-Zajac, M., Riedel, R., On the Reversible Sodium Plating/stripping Reaction in Porous SiCN(O) Ceramic: A Feasibility Study, Batteries & Supercaps 6 (2023) e202200491.

5. Tian, H.; Graczyk-Zajac, M.; De Carolis, D.; Tian, C.; Ricohermoso, E.; Yang, Z.; Li, W.; Wilamowska-Zawlocka, M.; Hofmann, J.P.; Weidenkaff, A.; Riedel, R. A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes,

J. Hazard. Mat.445 (2023) 130607, https://doi.org/10.1016/j.jhazmat.2022.130607.

6. Hermann, L.; Ehrenberg, H.; Graczyk-Zajac, M.; Kaymakci, E.; Kölbel, T.; Kölbel, L.; Tübke, J. Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents. Energy Advances (2022) https://doi.org/10.1039/D2YA00099G

7. Wilamowska-Zawlocka, M.; Graczyk-Zajac, M. Impact of blending with polystyrene on the microstructural and electrochemical properties of SiOC ceramic. Int J Appl Ceram Technol. (2022)1. https://doi.org/10.1111/ijac.14186

8. Wen, Q.; Qu, F.; Yu, Z.; Graczyk-Zajac, M.; Riedel, R. Si-based polymer-derived ceramics for energy conversion and storage (Review). J Adv Ceram 11 (2022)197, https://doi.org/10.1007/s40145-021-0562-2

9. Cramer, C.L; Ionescu, E.; Graczyk-Zajac, M.; Nelson, A.T.; Katoh, Y.; Haslam, J.J.; Wondraczek, L.; Aguirre, T.G.; LeBlanc, S.; Wang, H.; Masoudi, M.; Tegeler, E.; Riedel, R.; Colombo, P.; Minary-Jolandan, M. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Feature article, J Eur Cer Soc 42 (2022) 3049

https://doi.org/10.1016/j.jeurceramsoc.2022.01.058

10. Šić, E.; Melzi d'Eril, M.; Schutjajew, K.; Graczyk-Zajac, M.; Breitzke, H.; Riedel, R.; Oschatz, M.; Gutmann, T.; Buntkowsky, G. SiCN Ceramics as Electrode Materials for Sodium/Sodium Ion Cells – Insights from 23Na In-Situ Solid-State NMR, Batteries & Supercaps (2022), e202200066 DOI: 10.1002/batt.202200066

11. Qu, F.; Yu, Z.; Krol, M.; Chai, N.; Riedel, R.; Graczyk-Zajac, M. Electrochemical Performance of Carbon-Rich Silicon Carbonitride Ceramic as Support for Sulfur Cathode in Lithium Sulfur Battery. Nanomaterials 12 (2022)1283. https://doi.org/10.3390/nano12081283

12. Knozowski, D., Graczyk Zając, M.; Vrankovic, Trykowski, G.; Sawczak, M.; De Carolis, D.; Wilamowska-Zawłocka, M.; New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties, Composites Part B: Engineering, https://doi.org/10.1016/j.compositesb.2021.109302

13. Qu, F.; Graczyk-Zajac, M.; Vrankovic, D.; Chai, N.; Yu,Z.; Riedel, R. Effect of morphology of C-rich silicon carbonitride ceramic on electrochemical properties of sulfur cathode for Li-S battery. Electrochimica Acta 384 (2021) 138265

14. Cyman-Sachajdak A.; Graczyk-Zajac, M.; Trykowski, G.; Wilamowska-Zawłocka, M.; Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochimica Acta 383 (2021) 138356

15. De Carolis, M.; Vrankovic, D.; Kiefer, S.; Bruder, E.; Dürrschnabel, M.; Molina‐Luna, L.; Graczyk‐Zajac, M.; Riedel, R. Towards a Greener and Scalable Synthesis of Na2Ti6O13 Nanorods and Their Application as Anodes in Batteries for Grid‐Level Energy Storage. Energy Technology, 9 (2021) 2194-4296.

16. Knozowski, D.; Graczyk-Zajac, M.; Trykowski, G.; Wilamowska-Zawłocka, M.; Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices. Materials 13 (2020), 4302

17. Stabler, C.; Ionescu, E.; Graczyk-Zajac, M.; Gonzalo-Juan, I.; Riedel, R., Silicon Oxycarbide Glasses and Glass-Ceramics: “All-Rounder” Materials for Advanced Structural and Functional Applications. J. Am. Ceram. Soc. doi.org/10.1111/jace.15932

18. Storch, M.; Vrankovic, D.; Graczyk-Zajac, M.; Riedel, R.; The influence of pyrolysis temperature on the electrochemical behavior of porous carbon-rich SiCN polymer-derived ceramics, Solid State Ionics, 315 (2018) 59-64.

19. Graczyk-Zajac, M.; Vrankovic, D.; Waleska, P.; Hess, C.; Sasikumar, P. V.; Lauterbach, S.; Kleebe, H.-J.; Soraru, G. D., The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. Journal of Materials Chemistry A 2018, 6 (1), 93-103.

20. Graczyk-Zajac, M.; Wimmer, M.; Xu, Y.; Buntkowsky, G.; Neumann, C.; Riedel, R., Lithium intercalation into disordered carbon/SiCN composite. Part 2: Raman spectroscopy and 7Li MAS NMR investigation of lithium storage sites. J. Solid State Electrochem. 2017, 21 (1), 47-55.

21. Graczyk-Zajac, M.; Vrankovic, D.; Schader, F. H.; Fernandes, H. R.; Tulyaganov, D. U., Influence of external compressive stress on the ionic conductivity of melt-quenched lithium silicate (15Li2O-85SiO2) glass. Solid State Ionics 2017, 302, 61-65.

22. Wissel, K.; Vrankovic, D.; Trykowski, G.; Graczyk-Zajac, M., Synthesis of 3D silicon with tailored nanostructure: Influence of morphology on the electrochemical properties. Solid State Ionics 2017, 302, 180-185.

23. Vrankovic, D.; Wissel, K.; Graczyk-Zajac, M.; Riedel, R., Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon. Solid State Ionics 2017, 302, 66-71.

24. Kaspar, J.; Bazarjani, M. S.; Schitco, C.; Gurlo, A.; Graczyk-Zajac, M.; Riedel, R., Electrochemical study of NiO nanosheets: toward the understanding of capacity fading. Journal of Materials Science 2017, 52 (11), 6498-6505.

25. Stein, P.; Vrankovic, D.; Graczyk-Zajac, M.; Riedel, R.; Xu, B.-X., A Model for Diffusion and Immobilization of Lithium in SiOC Nanocomposite Anodes. JOM 2017.

26. Rohrer, J.; Vrankovic, D.; Cupid, D.; Riedel, R.; Seifert, H. J.; Albe, K.; Graczyk-Zajac, M., Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling. International Journal of Materials Research 2017, 108 (11), 920-932.

27. Vrankovic, D.; Graczyk-Zajac, M.; Kalcher, C.; Rohrer, J.; Becker, M.; Stabler, C.; Trykowski, G.; Albe, K.; Riedel, R., Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries. ACS Nano 2017, 11 (11), 11409-11416.

28. Kaspar, J.; Storch, M.; Schitco, C.; Riedel, R.; Graczyk-Zajac, M., SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties. J. Electrochem. Soc. 2016, 163 (2), A156-A162.

29. Haaks, M.; Kaspar, J.; Franz, A.; Graczyk-Zajac, M.; Riedel, R.; Vogel, M., 7Li NMR studies of lithium ion dynamics in polymer-derived silicon oxycarbide ceramics. Solid State Ionics 2016, 287, 28-35.

30. Vrankovic, D.; Reinold, L. M.; Riedel, R.; Graczyk-Zajac, M., Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. Journal of Materials Science 2016, 51 (12), 6051-6061.

31. Bhat, S.; Sasikumar, P.; Molina-Luna, L.; Graczyk-Zajac, M.; Kleebe, H.-J.; Riedel, R., Electrochemical Li Storage Properties of Carbon-Rich B–C–N Ceramics. C 2016, 2 (2), 9.

32. Kaspar, J.; Graczyk-Zajac, M.; Choudhury, S.; Riedel, R., Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. Electrochim. Acta 2016, 216, 196-202.

33. Vallachira Warriam Sasikumar, P.; Zera, E.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G. D., Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications. J. Am. Ceram. Soc. 2016, 99 (9), 2977-2983.

34. Wilamowska-Zawlocka, M.; Puczkarski, P.; Grabowska, Z.; Kaspar, J.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G. D., Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. RSC Advances 2016, 6 (106), 104597-104607.

35. Graczyk-Zajac, M.; Reinold, L. M.; Kaspar, J.; Sasikumar, P. V. W.; Soraru, G.-D.; Riedel, R., New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics. Nanomaterials 2015, 5 (1), 233-245.

36. Graczyk-Zajac, M.; Wimmer, M.; Neumann, C.; Riedel, R., Lithium intercalation into SiCN/disordered carbon composite. Part 1: influence of initial carbon porosity on cycling performance/capacity. J. Solid State Electrochem. 2015, 19, 2763-2769.

37. Reinold, L. M.; Yamada, Y.; Graczyk-Zajac, M.; Munakata, H.; Kanamura, K.; Riedel, R., The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries. J. Power Sources 2015, 282 (0), 409-415.

38. Pradeep, V. S.; Ayana, D. G.; Graczyk-Zajac, M.; Soraru, G. D.; Riedel, R., High Rate Capability of SiOC Ceramic Aerogels with Tailored Porosity as Anode Materials for Li-ion Batteries. Electrochim. Acta 2015, 157, 41-45.

39. Kaspar, J.; Graczyk-Zajac, M.; Riedel, R., Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods. Electrochim. Acta 2014, 115 (0), 665-670.

40. Pradeep, V. S.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G. D., New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials. Electrochim. Acta 2014, 119 (0), 78-85.

41. Kaspar, J.; Graczyk-Zajac, M.; Lauterbach, S.; Kleebe, H.-J.; Riedel, R., Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. J. Power Sources 2014, 269 (0), 164-172.

42. Kaspar, J.; Terzioglu, C.; Ionescu, E.; Graczyk-Zajac, M.; Hapis, S.; Kleebe, H.-J.; Riedel, R., Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability. Adv. Funct. Mater. 2014, 24 (26), 4097-4104.

43. Pradeep, V. S.; Graczyk-Zajac, M.; Wilamowska, M.; Riedel, R.; Soraru, G. D., Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics 2014, 262 (0), 22-24.

44. Baek, S.-H.; Reinold, L. M.; Graczyk-Zajac, M.; Riedel, R.; Hammerath, F.; Buechner, B.; Grafe, H.-J., Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance. J. Power Sources 2014, 253 (0), 342-348.

45. Wilamowska, M.; Pradeep, V. S.; Graczyk-Zajac, M.; Riedel, R.; Soraru, G. D., Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. Solid State Ionics 2014, 260 (0), 94-100.

46. Reinold, L. M.; Graczyk-Zajac, M.; Gao, Y.; Mera, G.; Riedel, R., Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries. J. Power Sources 2013, 236 (0), 224-229.

47. Liu, G.; Kaspar, J.; Reinold, L. M.; Graczyk-Zajac, M.; Riedel, R., Electrochemical performance of DVB-modified SiOC and SiCN polymer-derived negative electrodes for lithium-ion batteries. Electrochim. Acta 2013, 106 (0), 101-108.

48. Wilamowska, M.; Graczyk-Zajac, M.; Riedel, R., Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries. J. Power Sources 2013, 24 (0), 80-86.

49. Kaspar, J.; Graczyk-Zajac, M.; Riedel, R., Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties. J. Power Sources 2013, 244 (0), 450-455.

50. Graczyk-Zajac, M.; Toma, L.; Fasel, C.; Riedel, R., Carbon-rich SiOC anodes for lithium-ion batteries: Part I. Influence of material UV-pre-treatment on high power properties. Solid State Ionics 2012, 225 (0), 522-526.

51. Kaspar, J.; Graczyk-Zajac, M.; Riedel, R., Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking. Solid State Ionics 2012, 225 (0), 527-531.

52. Dibandjo, P.; Graczyk-Zajac, M.; Riedel, R.; Pradeep, V. S.; Soraru, G. D. a., Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. J. Eur. Ceram. Soc. 2012, 32 (10), 2495-2503.

53. Graczyk-Zajac, M.; Fasel, C.; Riedel, R., Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. J. Power Sources 2011, 196 (15), 6412-6418.

54. Reinold, L. M.; Graczyk-Zajac, M.; Fasel, C.; Riedel, R., Prevention of Solid Electrolyte Interphase Damaging on Silicon by Using Polymer Derived SiCN Ceramics. ECS Transactions 2011, 35, 37-44.

55. Graczyk-Zajac, M.; Lazar, A. M.; Chaumont, D.; Sacilotti, M.; Riedel, R., Electrochemical Investigation of Lithium Intercalation in MOCVD Derived Nanostructured Anatase/Rutile TiO2. ECS Transactions 2011, 35 (34), 207-213.

56. Nowak, A.; Graczyk-Zajac, M.; Riedel, R., in Materials Challenges in Alternative and Renewable Energy: Ceramic Transactions, Volume 224. John Wiley and Sons, Inc., Hoboken, New Jersey: 2010.

57. Graczyk-Zajac, M.; Mera, G.; Kaspar, J.; Riedel, R., Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries. J. Eur. Ceram. Soc. 2010, 30 (15), 3235-3243.

58. Kaspar, J.; Mera, G.; Nowak, A. P.; Graczyk-Zajac, M.; Riedel, R., Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics. Electrochim. Acta 2010, 56 (1), 174-182.

59. Graczyk-Zajac, M.; Yu. Vassiliev, S.; Vorotyntsev, M. A.; Tsirlina, G. A., Electropolymerization of pyrrole in acetonitrile as affected by the nature of substitute and deposition potential. J. Solid State Electrochem. 2010, 14 (11), 2039-2048.

60. Correia, J. P.; Graczyk, M.; Abrantes, L. M.; Vorotyntsev, M. A., Polypyrrole films functionalized with pendant titanocene dichloride complexes: Ellipsometric study of the electropolymerization process. Electrochim. Acta 2007, 53 (3), 1195-1205.

61. Vorotyntsev, M. A.; Skompska, M.; Graczyk, M.; Heinze, J.; Goux, J.; Le Gendre, P.; Moise, C., Electrochemical and spectral properties of some tantalocene derivatives with one pentamethylated cyclopentadienyl ligand: Cp*(Cp-R)TaCl2 , R = H, SiMe3 or (CH2)3NC4H4. J. Solid State Electrochem. 2007, 12 (4), 421.

62. Magdesieva, T. V.; Graczyk, M.; Vallat, A.; Nikitin, O. M.; Demyanov, P. I.; Butin, K. P.; Vorotyntsev, M. A., Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides. Electrochim. Acta 2006, 52 (3), 1265-1280.

63. Vorotyntsev, M. A.; Graczyk, M.; Lisowska-Oleksiak, A.; Goux, J.; Moise, C., Reactions of solute species at an electrode modified with titanocene functionalized polypyrrole film: ferrocene and titanocene dichloride. J. Solid State Electrochem. 2004, 8 (10), 818-827.

64. Lisowska-Oleksiak, A.; Graczyk, M., Lithium ion insertioninto poly(3,4-ethylenedioxytiophene) filmy from propylene carbonate electrolytes. Molecular physics reports 2002, 35, 87-93.