Plasmaimmersion

Eine einfache Methode, um Ionen in eine Oberfläche zu implantieren, besteht darin sie in einem Plasma zu platzieren (Immersion) und dessen Ionen durch eine an der Probe angelegte negative Hochspannung senkrecht auf deren Oberfläche zu beschleunigen. Somit können auch dreidimensionale Objekte wie Zahnräder oder Rohre gleichmäßig behandelt werden ohne Notwendigkeit einer Probenbewegung.

Prinzip

Das Plasma kann durch eine separate Plasmaquelle (z.B. Mikrowellen oder Antenne mit RF) erzeugt werden oder auch einfach durch die angelegte Hochspannung.

Durch Verwendung eines speziellen Probenhalters lassen sich die Behandlungszeiten deutlich verkürzen [34].

Die implantierten Elemente dringen bis zu einigen zehn nm in die Oberfläche ein und ändern deren Eigenschaften. Hierdurch lassen sich z.B. die Härte, der Reibungskoeffizient oder das Korrosionsverhalten [12, 23] des Substrates verändern.

Abhängig vom verwendeten Plasmagas können sich Verbindungen mit dem Substrat bilden [2, 4, 6]; im Falle von Kohlenstoff oder Stickstoff bilden sich Carbide bzw. Nitride. Mittels Kohlenstoffimplantation und anschließendem Heizen lässt sich Anatas in Titanoberflächen erzeugen [29].

SIMS-Tiefenprofil von in Si implantiertem Kohlenstoff nach unterschiedlichen Behandlungszeiten.

XPS Tiefenprofil von in Titan implantiertem Kohlenstoff.

DLC-Schichten

Mit dem gleichen Aufbau können auch Schichten hergestellt werden. Bei Verwendung eines Kohlenwasserstoffgases entstehen Diamant-ähnliche Kohlenstoffschichten (diamond-like carbon, DLC) [1]. Die Eigenschaften der DLC-Schichten, z.B. ihr Reibungskoeffizient, hängen vom C:H-Verhältnis ab, welches sich durch Wahl des Plasmagases und durch die Herstellungsparameter beeinflussen lässt [3, 8, 11, 20, 21]. Für spezielle Zwecke ist die Zugabe eines weiteren Elementes wie Si [10, 14, 30], F [15], I [36, 37] oder Ag [19, 22, 26] vorteilhaft. Hierdurch lassen sich eine erhöhte Hitzebeständigkeit, Hydrophobizität bzw. ein antibakterieller Effekt der Schichten bewirken.

Aus titanhaltigen DLC-Schichten lassen sich durch Heizen an Luft Anatas-Schichten herstellen [35].

Die Adhäsion der Schichten auf dem Substrat ist in einigen Fällen problematisch und kann verbessert werden durch eine Zwischenschicht, z.B. eine mittels Implantation hergestellte Gradientenschicht [24] oder durch eine durch Sputtern aufgebrachte Metallschicht. Insbesondere auf Kupfersubstraten ist die Adhäsion von DLC-Schichten sehr gering. Hier tritt zusätzlich das Problem einer inhomogenen lateralen Verteilung implantierter Spezies auf [5, 7], bedingt durch die Abhängigkeit der

Zur Herstellung der Proben stehen zwei Vakuum-Kammern zur Verfügung, eine davon mit der Möglichkeit Magnetronsputtern in Kombination zu verwenden.

46 Diamond-Like Carbon Films with Low Internal Stress by a Simple Bilayer Approach
K. Baba, R. Hatada, S. Flege, W. Ensinger
Coatings 10, 696, 2020
DOI: 10.3390/coatings10070696
45 The Influence of Preparation Conditions on the Structural Properties and Hardness of Diamond-Like Carbon Films, Prepared by Plasma Source Ion Implantation
R. Hatada, S. Flege, M. N. Ashraf, A. Timmermann, C. Schmid, W. Ensinger
Coatings 10, 360, 2020
DOI: 10.3390/coatings10040360
44 Deposition of diamond-like carbon films on insulating substrates by plasma source ion implantation
R. Hatada, S. Flege, W. Ensinger, K. Baba
Surface and Coatings Technology 385, 125426, 2020
DOI: 10.1016/j.surfcoat.2020.125426
43 Preparation of Aniline-Based Nitrogen-Containing Diamond-Like Carbon Films with Low Electrical Resistivity
R. Hatada, S. Flege, W. Ensinger, S. Hesse, S. Tanabe, Y. Nishimura, K. Baba
Coatings 10, 54, 2020
DOI: 10.3390/coatings10010054
42 Electrical Transport Properties of Ni-doped Diamond-like Carbon Films at and above Room Temperature
S. Saha, A. K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A. K. Meikap
Journal of Applied Physics 126, 154104, 2019
DOI: 10.1063/1.5118871
41 Surface Structuring of Diamond-like Carbon Films by Chemical Etching of Zinc Inclusions
R. Hatada, S. Flege, B. Rimmler, C Dietz, W. Ensinger, K. Baba
Coatings 9, 125, 2019
DOI: 10.3390/coatings9020125
40 Dielectric constant, AC conductivity and impedance spectroscopy of zinc-containing diamond-like carbon film UV photodetector
A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A.K. Meikap
Journal of Alloys and Compounds 758, 194-205, 2018
DOI: 10.1016/j.jallcom.2018.05.121
39 Tightly adhering diamond-like carbon films on copper substrates by oxygen pre-implantation
S. Flege, R. Hatada, T. Vogel, E. Bruder, M. Major, W. Ensinger, K. Baba
Surface & Coatings Technology 335, 134-139, 2018
DOI: 10.1016/j.surfcoat.2017.12.029
38 Preparation of iodine containing diamond-like carbon films by trifluoroiodomethane
T.Inoi, K.Baba, S. Flege, R. Hatada, W. Ensinger
Materials Letters 215, 68-70, 2018
DOI: 10.1016/j.matlet.2017.12.061
37 Properties of iodine containing diamond-like carbon films prepared by plasma source ion implantation
T.Inoi, K.Baba, S. Flege, R. Hatada, W. Ensinger
Diamond and Related Materials 81, 108-112, 2018
DOI: 10.1016/j.diamond.2017.11.013
36 Preparation of anatase films from titanium containing diamond-like carbon films
R. Hatada, S. Flege, W. Ensinger, K. Baba
Materials Letters 213, 148-150, 2018
DOI: 10.1016/j.matlet.2017.11.034
35 Note: Sample holder with open area for increased deposition rate in plasma immersion ion implantation and deposition
S. Flege, R. Hatada, A. Derepa, C. Dietz, W. Ensinger, K. Baba
Review of Scientific Instruments 88, 096106, 2017
DOI: 10.1063/1.4995080
34 Nanoparticles as a Metal Source in Plasma Processes
S. Flege, R. Hatada, G. Jantsen, T. Walbert, W. Ensinger, K. Baba, T. Morimura, F. Muench
Transactions of the Materials Research Society of Japan 42, 31-36, 2017
DOI: 10.14723/tmrsj.42.31
33 Properties of Zinc-containing Diamond-like Carbon Films Prepared by Plasma Source Ion Implantation
R. Hatada, S. Flege, B. Rimmler, W. Ensinger, K. Baba
Transactions of the Materials Research Society of Japan 42, 37-40, 2017
DOI: 10.14723/tmrsj.42.37
32 Preparation of Metal-Containing Diamond-like Carbon Films by Magnetron Sputtering and Plasma Source Ion Implantation and Their Properties
S. Flege, R. Hatada, A. Hanauer, W. Ensinger, T. Morimura, K. Baba
Advances in Materials Science and Engineering 2017, 9082164, 2017
DOI: 10.1155/2017/9082164
31 Long-term thermal stability of Si-containing diamond-like carbon films prepared by plasma source ion implantation
R. Hatada, K. Baba, S. Flege, W. Ensinger
Surface and Coatings Technology 305, 93-98, 2016
DOI: 10.1016/j.surfcoat.2016.08.011
30 Preparation of anatase surface layers via carbon implantation into titanium
K. Baba, R. Hatada, S. Flege, W. Ensinger
Materials Letters 168, 196-199, 2016
DOI: 10.1016/j.matlet.2016.01.086
29 Use of a nanostructured surface coating to achieve higher sputter rates
S. Flege, R. Hatada, T. Kaiser, F. Muench, G. Cherkashinin, A. Schwöbel, W. Ensinger, K. Baba
Materials Letters 164, 532-534, 2016
DOI: 10.1016/j.matlet.2015.11.059
28 Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation
S. Flege, R. Hatada, M. Hoefling, A. Hanauer, A. Abel, K. Baba, W. Ensinger
Nuclear Instruments and Methods in Physics Research B 365, Part A, 357-361, 2015
DOI: 10.1016/j.nimb.2015.07.084
27 Preparation of Ag-Containing Diamond-like Carbon Films on the Interior Surface of Tubes by a Combined Method of Plasma Source Ion Implantation and DC Sputtering
R. Hatada, S. Flege, A. Bobrich, W. Ensinger, C. Dietz, K. Baba, T. Sawase, T. Watamoto, T. Matsutani
Applied Surface Science 310, 257-261, 2014
DOI: 10.1016/j.apsusc.2014.03.071
26 DLC coating of interior surfaces of steel tubes by low energy plasma source ion implantation and deposition
K. Baba, R. Hatada, S. Flege, W. Ensinger
Applied Surface Science 310, 262-265, 2014
DOI: 10.1016/j.apsusc.2014.03.064
25 Improved adhesion of DLC films on copper substrates by preimplantation
S. Flege, R. Hatada, W. Ensinger, K. Baba
Surface and Coatings Technology 256, 37-40, 2014
DOI: 10.1016/j.surfcoat.2013.12.020
24 Surface modification and corrosion properties of implanted and DLC coated stainless steel by plasma based ion implantation and deposition
R. Hatada, S. Flege, A. Bobrich, W. Ensinger, K. Baba
Surface and Coatings Technology 256, 23-29, 2014
DOI: 10.1016/j.surfcoat.2013.11.051
23 Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation
K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawase, T. Morimura
Vacuum 89, 179-184, 2013
DOI: 10.1016/j.vacuum.2012.04.015
22 Preparation of Diamond-like Carbon Films by Plasma Source Ion Implantation with External Glow Discharge
R. Hatada, K. Baba, S. Flege, S. Nakao, W. Ensinger
Transactions of the Materials Research Society of Japan 37, 227-232, 2012
DOI: 10.14723/tmrsj.37.227
21 Properties of Hydrogenated DLC Films as Prepared by a Combined Method of Plasma Source Ion Implantation and Unbalanced Magnetron Sputtering
S. Flege, R. Hatada, W. Ensinger, K. Baba
Journal of Materials Research 27,845-849, 2012
DOI: 10.1557/jmr.2011.341
20 Preparation and properties of Ag containing diamond-like carbon films by magnetron plasma source ion implantation
K. Baba, R. Hatada, S. Flege, W. Ensinger
Advances in Materials Science and Engineering 2012, 536853, 2012
DOI: 10.1155/2012/536853
19 Deposition of Diamond-like Carbon Films on Inner Wall Surfaces of Millimeter Size Diameter Steel Tubes by Plasma Source Ion Implantation
K. Baba, R. Hatada, W. Ensinger, S. Flege
IEEE Transactions on Plasma Science 39, 3140-3143, 2011
DOI: 10.1109/TPS.2011.2168829
18 Comparison of the Surface Modification of Tungsten and Gold by Methane Plasma Source Ion Implantation
R. Hatada, S. Flege, W. Ensinger, K. Baba
IEEE Transactions on Plasma Science 39, 3080-3084, 2011
DOI: 10.1109/TPS.2011.2160462
17 Methane Plasma-Based Ion Implantation of Metallic and Galvanically Oxidized Tantalum
S. Flege, R. Hatada, K. Baba, W. Ensinger
Surface Coatings and Technology 206, 951-954, 2011
DOI: 10.1016/j.surfcoat.2011.03.135
16 Fluorine and carbon ion implantation and deposition on metals by plasma source ion implantation
S. Flege, R. Hatada, K. Baba, W. Ensinger
Surface Coatings and Technology 206, 963-966, 2011
DOI: 10.1016/j.surfcoat.2011.03.100
15 Corrigendum to „Fluorine and carbon ion implantation and deposition on metals by plasma source ion implantation“
S. Flege, R. Hatada, K. Baba, W. Ensinger
Surface and Coatings Technology 245, 167, 2014
DOI: 10.1016/j.surfcoat.2014.02.054
14 Temperature dependent properties of silicon containing diamond-like carbon films prepared by plasma source ion implantation
R. Hatada, S. Flege, K. Baba, W. Ensinger, H.-J. Kleebe, I. Sethmann, S. Lauterbach
Journal of Applied Physics 107, 083307, 2010
DOI: 10.1063/1.3394002
13 Influence of sputter rate and crystal orientation on the distribution of carbon in polycrystalline copper surfaces treated by plasma immersion ion implantation
S. Flege, G. Kraft, E. Bruder, K. Baba, R. Hatada, W. Ensinger
Journal of Applied Physics 106, 023302, 2009
DOI: 10.1063/1.3176488
12 Corrosion Resistance of Magnesium Treated by Hydrocarbon Plasma Immersion Ion Implantation
M. Yekehtaz, K. Baba, R. Hatada, S. Flege, F. Sittner, W. Ensinger
Nuclear Instruments and Methods in Physics Research Section B 267, 1666-1669, 2009
DOI: 10.1016/j.nimb.2009.01.099
11 Correlations between process parameters and film properties of diamond-like carbon films formed by hydrocarbon plasma immersion ion implantation
W. Ensinger
Surface and Coatings Technology 203, 2721-2726, 2009
DOI: 10.1016/j.surfcoat.2009.02.101
10 Deposition of silicon containing diamond-like carbon films by plasma enhanced chemical vapour deposition
K. Baba, R. Hatada, S. Flege, W. Ensinger
Surface and Coatings Technology 203, 2747-2750, 2009
DOI: 10.1016/j.surfcoat.2009.02.117
9 Plasma-based carbon ion implantation of aluminium at different process times in a pulse-ignited methane plasma
K. Baba, R. Hatada, S. Flege, G. Kraft, W. Ensinger
Surface and Coatings Technology 203, 2617-2619, 2009
DOI: 10.1016/j.surfcoat.2009.02.077
8 Mechanical and electrical properties of diamond-like carbon films deposited by plasma source ion implantation
K. Baba, R. Hatada, S. Flege, W. Ensinger
Nuclear Instruments and Methods in Physics Research Section B 267, 1688-1691, 2009
DOI: 10.1016/j.nimb.2009.01.105
7 Distribution of carbon in polycrystalline copper surfaces treated by methane plasma immersion ion implantation
S. Flege, G. Kraft, K. Baba, R. Hatada, W. Ensinger
Nuclear Instruments and Methods in Physics Research Section B 267, 1531-1535, 2009
DOI: 10.1016/j.nimb.2009.01.126
6 Formation of carbides and diamond-like carbon films by hydrocarbon plasma immersion ion implantation
W. Ensinger
Chapter 5 in: R. Wei (Ed.), Plasma Surface Engineering Research and its Practical Applications, Research Signpost, 2008
Book description
5 Comparison of surface layers on copper, titanium and tantalum created by methane plasma-based ion implantation
G. Kraft, S. Flege, K. Baba, R. Hatada, W. Ensinger
physica status solidi a 205, 985-988, 2008
DOI: 10.1002/pssa.200778330
4 Silicon carbide and boron carbide thin films formed by plasma immersion ion implantation of hydrocarbon gases
W. Ensinger, G. Kraft, F. Sittner, K. Volz, K. Baba, R. Hatada
Surface and Coatings Technology, 201, 8366-8369, 2007
DOI: 10.1016/j.surfcoat.2006.03.057
3 Diamond-like carbon films formed by hydrocarbon plasma immersion ion implantation with methane/toluene mixtures
W. Ensinger, K. Volz, K. Baba, R. Hatada
Nuclear Instruments and Methods in Physics Research Section B 257, 692-695, 2007
DOI: 10.1016/j.nimb.2007.01.073
2 Formation of thin carbide films of titanium and tantalum by methane plasma immersion ion implantation
K. Baba, R. Hatada, S. Flege, G. Kraft, W. Ensinger
Nuclear Instruments and Methods in Physics Research Section B 257, 746-749, 2007
DOI: 10.1016/j.nimb.2007.01.076
1 Formation of diamond-like carbon films by plasma-based ion implantation and their characterization
W. Ensinger
New Diamond and Frontier Carbon Technology 16, 1-32, 2006
Paper on external server (wird in neuem Tab geöffnet)
Note that the last page is missing in that pdf. Here (wird in neuem Tab geöffnet) is page 32.